下表中数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第行第列的数为,则:
(Ⅰ) ; (Ⅱ)表中数共出现 次.
(Ⅰ),(Ⅱ)
解析试题分析:利用观察法及定义可知第1行数组成的数列A1j(j=1,2,)是以2为首项,公差为1的等差数列,进一步分析得知第j列数组成的数列A1j(i=1,2,)是以j+1为首项,公差为j的等差数列,同时分别求出通项公式,从而从而得知结果。
第i行第j列的数记为Aij.那么每一组i与j的解就是表中一个数.
因为第一行数组成的数列A1j(j=1,2,)是以2为首项,公差为1的等差数列,
所以=2+(j-1)×1=j+1,
所以第j列数组成的数列A1j(i=1,2,)是以j+1为首项,公差为j的等差数列,
所以
令=ij+1=2010,故可知
82,表中数+1=82, =81=,共出现了5次。
考点:等差数列
点评:此题考查行列模型的等差数列的求法,运用所学的等差数列和等比数列来求解通项公式是解题的关键,属于中档题。
科目:高中数学 来源: 题型:解答题
某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列,每年发放的电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
| | | ||
3 | | | |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com