精英家教网 > 高中数学 > 题目详情
3.不等式x2+x-2>0的解集为(  )
A.{x|x<-2或x>1}B.{x|-2<x<1}C.{x|x<-1或x>2}D.{x|-1<x<2}

分析 把不等式x2+x-2>0化为(x-1)(x+2)>0,求出解集即可.

解答 解:∵不等式x2+x-2>0化为(x-1)(x+2)>0,
解得x<-2或x>1;
∴不等式x2+x-2>0的解集是{x|x<-2或x>1}.
故选:A.

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知复数z1=2-3i,z2=$\frac{15-5i}{(2+i)2}$.求:
(1)z1+$\overline{{z}_{2}}$;
(2)z1•z2
(3)$\frac{{z}_{1}}{{z}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=(x-1)ex-kx2(k∈R),当k∈(${\frac{1}{2}$,1)时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设点(x,y)在不等式组$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y-4≤0\end{array}\right.$所表示的平面区域上,若对于b∈[0,1]时,不等式ax-by>b恒成立,则实数a的取值范围是(  )
A.($\frac{2}{3}$,4)B.($\frac{2}{3}$,+∞)C.(4,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从装有3个白球、2个红球的袋中任取3个,则所取的3个球中至多有1个红球的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\left\{\begin{array}{l}{x-2,(x≥10)}\\{f[f(x+6)],(x<10)}{\;}\end{array}\right.$,则f(9)的值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一次测试中,为了了解学生的学习情况,从中抽取了n个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名参加志愿者活动,所抽取的2名同学中得分都在[80,90)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在公差为正数的等差数列{an}中,若a10+a11<0,且a10a11<0,Sn是其前n项和,则使Sn<0的n的最大值为21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知loga$\frac{4}{3}$>1,则a的取值范围是(  )
A.0<a<1B.a>1C.1<a<$\frac{4}{3}$D.a>$\frac{4}{3}$

查看答案和解析>>

同步练习册答案