精英家教网 > 高中数学 > 题目详情
13.已知f(x)=sin2x+cosx,x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],则f(x)的值域为[$\frac{1}{4}$,$\frac{5}{4}$].

分析 先可将原函数变成y=-(cosx-$\frac{1}{2}$)2+$\frac{5}{4}$,而由x的范围,根据余弦函数的图象可求出,通过上面函数解析式即可求出其值域.

解答 解:y=1-cos2x+cosx=-(cosx-$\frac{1}{2}$)2+$\frac{5}{4}$,
∵x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴cosx∈[-$\frac{1}{2}$,1],
∴-1≤cosx-$\frac{1}{2}$≤$\frac{1}{2}$,
∴-1≤-(cosx-$\frac{1}{2}$)2≤0
∴$\frac{1}{4}$≤$\frac{5}{4}$-(cosx-$\frac{1}{2}$)2≤$\frac{5}{4}$
∴原函数的值域为[$\frac{1}{4}$,$\frac{5}{4}$],
故答案为:[$\frac{1}{4}$,$\frac{5}{4}$]

点评 考查sin2x+cos2x=1,配方法求函数的最值,从而求出函数的值域,以及对余弦函数图象的掌握,根据余弦函数的图象求余弦函数的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.给出下列函数中图象关于y轴对称的是(  )
①y=log2x;  ②y=x2; ③y=2|x|;   ④$y=\frac{2}{x}$.
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求值:cos25°cos35°-cos65°cos55°;
(2)已知sinθ+2cosθ=0,求$\frac{cos2θ-sin2θ}{{1+{{cos}^2}θ}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点O为线段AB=4的中点,C为平面上任一点,$\overrightarrow{CA}•\overrightarrow{CB}=0$(C与A,B不重合),若P为线段OC上的动点,则$(\overrightarrow{PA}+\overrightarrow{PB})•\overrightarrow{PC}$的最小值是(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:
①sin105°
②cos75°
③cos$\frac{π}{5}$cos$\frac{3π}{10}$-sin$\frac{π}{5}$sin$\frac{3π}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线l1:x+2y-7=0与l2:2x+kx+3=0平行,则k的值是(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解不等式:
(1)tanx≥1; 
(2)$\sqrt{2}+2cos(2x-\frac{π}{3})≥0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列命题,其中正确的命题是④
①y=sinx在第一象限为增函数;
②函数y=cos(ωx+φ)的最小正周期为T=$\frac{2π}{ω}$;
③函数y=sin($\frac{2x}{3}$+$\frac{7π}{2}$)是奇函数;
④函数y=cos2x向左平移$\frac{π}{8}$个单位得到y=cos(2x+$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程x$\sqrt{2{x^2}+2{y^2}-3}$=0所表示的曲线是(  )
A.两个点和两条射线B.一条直线和一个圆
C.一个点和一个圆D.两条射线和一个圆

查看答案和解析>>

同步练习册答案