精英家教网 > 高中数学 > 题目详情
8.计算:
①sin105°
②cos75°
③cos$\frac{π}{5}$cos$\frac{3π}{10}$-sin$\frac{π}{5}$sin$\frac{3π}{10}$.

分析 ①利用105°=90°+15°,15°=45°-30°化简三角函数使之成为特殊角的三角函数,然后利用两角和与差的正弦余弦公式进行求解.
②利用75°=30°+45°,化简三角函数使之成为特殊角的三角函数,然后利用两角和余弦公式进行求解.
③利用两角和余弦公式,特殊角的三角函数值即可进行求解.

解答 解:①sin105°=sin(90°+15°)=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=$\frac{\sqrt{6}+\sqrt{2}}{4}$.
②cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=$\frac{\sqrt{6}-\sqrt{2}}{4}$.
③cos$\frac{π}{5}$cos$\frac{3π}{10}$-sin$\frac{π}{5}$sin$\frac{3π}{10}$=cos($\frac{π}{5}$+$\frac{3π}{10}$)=cos$\frac{π}{2}$=0.

点评 本题考查三角函数的诱导公式,两角和与差的正弦余弦公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=1+\frac{1}{x}+lnx+\frac{lnx}{x}$.
(1)判断函数f(x)的单调性;
(2)求证:当x>1时,$\frac{f(x)}{e+1}>\frac{{2{e^{x-1}}}}{{x{e^x}+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一个不透明的袋子里,有三个大小相等小球(两黄一红),现在分别由3个同学无放回地抽取,如果已知第一名同学没有抽到红球,那么最后一名同学抽到红球的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC的内角A,B,C,所对的边分别为a,b,c,向量$\overrightarrow{m}$=(a,$\sqrt{3}$b),$\overrightarrow n=(sinB,-cosA)$,且$\overrightarrow m•\overrightarrow n=0$.
(1)求A;
(2)若$a=\frac{7}{2}$,△ABC的面积为$\frac{3}{2}\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设x,y,z∈R,若x-2y+z=4.
(1)求x2+y2+z2的最小值;
(2)求x2+(y-1)2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=sin2x+cosx,x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],则f(x)的值域为[$\frac{1}{4}$,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+12x
(1)判断函数f(x)的单调性
(2)求函数f(x)当x∈[-3,1]时的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.国庆节前夕,甲、乙两同学相约10月1日上午8:00到8:30之间在7路公交赤峰二中站点乘车去红山公园游玩,先到者若等了10分钟还没有等到后到者,则需发短信联系.假设两人的出发时间是独立的,在8:00到8:30之间到达7路公交赤峰二中站点是等可能的,则两人不需要发短信联系就能见面的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{5}{9}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某种产品的年销售额y与该年广告费用支出x有关,现收集了4组观测数据列于下表:
x(万元)1456
y(万元)30406050
(1)已知这两个变量满足线性相关关系,求y与x之间的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)计划2016年的销售额为100万元,请根据你得到的模型,预测该年广告费用支出应为多少万元?
(线性回归方程系数公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,参考数据$\sum_{i=1}^4{{x_i}{y_i}=}790$)

查看答案和解析>>

同步练习册答案