精英家教网 > 高中数学 > 题目详情
19.在一个不透明的袋子里,有三个大小相等小球(两黄一红),现在分别由3个同学无放回地抽取,如果已知第一名同学没有抽到红球,那么最后一名同学抽到红球的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.无法确定

分析 本题是一个计算概率的问题,由题意知已经知道,由于第一名同学没有抽到红球,问题转化为研究两个人抽取红球的情况,根据无放回抽取的概率意义,可得到最后一名同学抽到红球的概率.

解答 解:由题意,由于第一名同学没有抽到红球,问题转化为研究两个人抽取红球的情况,
由于无放回的抽样是一个等可能抽样,故此两个同学抽到红球的概率是一样的都是$\frac{1}{2}$.
故选:C.

点评 本题考查等可能事件的概率,理解无放回抽样是一个等可能抽样是求解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求下列函数的定义域
(1)y=$\sqrt{x+2}$+$\frac{1}{x+1}$+(x-1)0
(2)y=$\frac{1}{{1-\sqrt{x-3}}}$
(3)若y=f(x)的定义域为[1,3],求y=f(1-3x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$.
(1)求函数f(x)的最小正周期和单调区间;
(2)设锐角△ABC的三个内角A、B、C的对应边分别是a,b,c,若$cosB=\frac{1}{3}$,$c=\sqrt{6}$,f($\frac{C}{2}$)=-$\frac{1}{4}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于函数f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$),则下列命题:
①y=f(x)的最大值为$\sqrt{2}$;
②y=f(x)最小正周期是π;
③y=f(x)在区间$[\frac{π}{24},\frac{13π}{24}]$上是减函数;
④将函数y=$\sqrt{2}$cos2x的图象向右平移$\frac{π}{24}$个单位后,将与已知函数的图象重合.
其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆锥曲线C的极坐标方程为${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,定点$A(0,-\sqrt{3})$,F1,F2是圆锥曲线C的左、右焦点.直线经过点F1且平行于直线AF2
(Ⅰ)求圆锥曲线C和直线的直角坐标方程;
(Ⅱ)若直线与圆锥曲线C交于M,N两点,求|F1M|•|F1N|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求值:cos25°cos35°-cos65°cos55°;
(2)已知sinθ+2cosθ=0,求$\frac{cos2θ-sin2θ}{{1+{{cos}^2}θ}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$ 的值为(  )
A.22n-1-1B.22n-1C.2n-1D.2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:
①sin105°
②cos75°
③cos$\frac{π}{5}$cos$\frac{3π}{10}$-sin$\frac{π}{5}$sin$\frac{3π}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.8+16πB.24+8πC.16+8πD.$\frac{64}{3}+8π$

查看答案和解析>>

同步练习册答案