精英家教网 > 高中数学 > 题目详情
14.已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆锥曲线C的极坐标方程为${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,定点$A(0,-\sqrt{3})$,F1,F2是圆锥曲线C的左、右焦点.直线经过点F1且平行于直线AF2
(Ⅰ)求圆锥曲线C和直线的直角坐标方程;
(Ⅱ)若直线与圆锥曲线C交于M,N两点,求|F1M|•|F1N|.

分析 (I)圆锥曲线C的极坐标方程为${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,即3ρ2+(ρsinθ)2=12,利用互化公式可得直角坐标方程.利用斜率计算公式可得${k}_{A{F}_{2}}$.利用点斜式可得要求的直线方程.
(II)由(I)可得直线的参数方程为:$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).代入椭圆方程可得:5t2-4t-12=0,利用|F1M|•|F1N|=|t1t2|即可得出.

解答 解:(I)圆锥曲线C的极坐标方程为${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,即3ρ2+(ρsinθ)2=12,可得直角坐标方程:3x2+4y2=12,
即$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.∴F1(-1,0),F2(1,0).
${k}_{A{F}_{2}}$=$\frac{-\sqrt{3}-0}{0-1}$=$\sqrt{3}$.
∴要求的直线方程为:y=$\sqrt{3}$(x+1).
(II)由(I)可得直线的参数方程为:$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).
代入椭圆方程可得:5t2-4t-12=0,
∴t1t2=-$\frac{12}{5}$.
∴|F1M|•|F1N|=|t1t2|=$\frac{12}{5}$.

点评 本题考查了极坐标方程化为直角坐标方程、椭圆的标准方程、直线的点斜式、直线的参数方程及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(log2x)=x2+2x.
(1)求函数f(x)的解析式;
(2)若方程f(x)=a•2x-4在区间(0,2)内有两个不相等的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E的中心在坐标原点,且抛物线x2=-4$\sqrt{5}$y的焦点是椭圆E的一个焦点,以椭圆E的长轴的两个端点及短轴的一个端点为顶点的三角形的面积为6.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若斜率为$\frac{3}{2}$的直线l与椭圆E交于不同的两点A、B,又点C($\frac{4}{3}$,2),求△ABC面积最大时对应的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.${(\frac{2}{{\sqrt{x}}}-x)^9}$展开式中除常数项外的其余项的系数之和为(  )
A.5377B.-5377C.5375D.-5375

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正方形ABCD的边长为1,把三角形ABD沿对角线BD翻折,使得面ABD⊥面BCD后,有如下四个结论:
(1)AC⊥BD;(2)△ACD是等边三角形;(3)四面体A-BCD的表面积为$1+\frac{{\sqrt{3}}}{2}$.(4)四面体A-BCD的内切球半径是$\frac{{2\sqrt{3}-\sqrt{6}}}{6}$.
则正确结论的序号为(1)(2)(3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一个不透明的袋子里,有三个大小相等小球(两黄一红),现在分别由3个同学无放回地抽取,如果已知第一名同学没有抽到红球,那么最后一名同学抽到红球的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M=$\left\{{x\left|{\frac{x^2}{16}+\frac{y^2}{9}=1}\right.}\right\},N=\left\{{y\left|{\frac{x}{4}+\frac{y}{3}=1}\right.}\right\}$,则M∩N=(  )
A.B.{(4,0),(0,3)}C.{4,3}D.[-4,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设x,y,z∈R,若x-2y+z=4.
(1)求x2+y2+z2的最小值;
(2)求x2+(y-1)2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a1+a15=3,则S15=(  )
A.45B.30C.22.5D.21

查看答案和解析>>

同步练习册答案