精英家教网 > 高中数学 > 题目详情
14.曲线y=a$\sqrt{x}$(a>0)与曲线y=ln$\sqrt{x}$有公共点,且在公共点处的切线相同,则a的值为(  )
A.eB.e2C.$\frac{1}{{e}^{2}}$D.$\frac{1}{e}$

分析 设出公共点的坐标,求出函数的导数,利用导数的几何意义建立方程关系进行求解即可.

解答 解:y=ln$\sqrt{x}$=$\frac{1}{2}$lnx,
设公共点的坐标为(m,$\frac{1}{2}$lnm),
则函数y=f(x)=a$\sqrt{x}$(a>0)的导数f′(x)=$\frac{a}{2\sqrt{x}}$,曲线y=g(x)=$\frac{1}{2}$lnx的导数g′(x)=$\frac{1}{2x}$,
则f′(m)=$\frac{a}{2\sqrt{m}}$,g′(m)=$\frac{1}{2m}$,
则由f′(m)=g′(m),得$\frac{a}{2\sqrt{m}}$=$\frac{1}{2m}$,(m>0),
则a=$\frac{1}{\sqrt{m}}$,
又a$\sqrt{m}$=ln$\sqrt{m}$,
即ln$\sqrt{m}$=1,得$\sqrt{m}$=e,则a=$\frac{1}{\sqrt{m}}$=$\frac{1}{e}$,
故选:D.

点评 本题主要考查导数的几何意义,求函数的导数,建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知动点M的坐标(x,y)满足的约束条件:$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,定点A(3,-1),O为坐标原点,则z=$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范围是(  )
A.[-$\frac{3}{2}$,6]B.[-$\frac{3}{2}$,-1]C.[-1,6]D.[-6,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等比数列{an}的前n项和为Sn,且${a_1}+{a_3}=\frac{5}{2}$,${a_2}+{a_4}=\frac{5}{4}$,则an=22-n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“|m|<2”是“m≤2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|2x2-3x-9≤0},B={x|x≥m}.若(∁RA)∩B=B,则实数m的值可以是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若2+i(i为虚数单位)是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,则a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若α为锐角,cos2α=$\frac{3}{5}$,则tan(α+$\frac{π}{4}$)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{m}$=1,(m>0)的离心率与一条斜率为正数的渐近线的斜率之和为$\frac{\sqrt{34}+3}{5}$,则m=(  )
A.9B.16C.9或16D.4或15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数f(x)满足f(x)=f(x-2),当x∈(1,3)时,f(x)=1+(x-2)2,则(  )
A.f(sin$\frac{2π}{3}$)>f(sin$\frac{π}{6}$)B.f(sin$\frac{2π}{3}$)<f(cos$\frac{2π}{3}$)C.f(cos$\frac{π}{3}$)>f(cos$\frac{π}{4}$)D.f(tan$\frac{π}{3}$)<f(tan$\frac{2π}{3}$)

查看答案和解析>>

同步练习册答案