精英家教网 > 高中数学 > 题目详情
20.已知函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则经过点P(φ,0),斜率为A的直线的方程为(  )
A.y=$\sqrt{2}$(x-$\frac{3π}{4}$)B.y=$\sqrt{2}$(x-$\frac{π}{4}$)C.y=$\sqrt{3}$(x-$\frac{π}{3}$)D.y=$\sqrt{3}$(x-$\frac{2π}{3}$)

分析 由函数的图象可得T,利用周期公式可求ω,再由图象过点(-$\frac{π}{12}$,A),结合范围0<φ<π,可求φ,由图象过点(0,1)可求A,利用点斜式可求经过点P(φ,0),斜率为A的直线的方程.

解答 解:由题中图象可知,三角函数的最小正周期T满足$\frac{T}{2}$=$\frac{π}{4}$-(-$\frac{π}{12}$)=$\frac{π}{3}$,则T=$\frac{2π}{3}$,则ω=3,
又3×(-$\frac{π}{12}$)+φ=$\frac{π}{2}$+2kπ(k∈Z),解得φ=$\frac{3π}{4}$+2kπ(k∈Z),
又0<φ<π,
故φ=$\frac{3π}{4}$,
又Asin$\frac{3π}{4}$=1,解得A=$\sqrt{2}$,
故所求直线的方程为y=$\sqrt{2}$(x-$\frac{3π}{4}$).
故选:A.

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,考查了点斜式方程的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.从甲、乙、丙3人中,选2人分别当正、副班长,不同的选法种数为(  )
A.23B.32C.$A_3^2$D.$C_3^2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥S-ABC,满足SA,SB,SC两两垂直,且SA=SB=SC=2,Q是三棱锥S-ABC外接球上一动点,则点Q到平面ABC的距离的最大值为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cos(x-$\frac{π}{4}$).
(Ⅰ)若f(α)=$\frac{7\sqrt{2}}{10}$,求sin2α的值;
(II)设g(x)=f(x)•f(x+$\frac{π}{2}$),求函数g(x)在R的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点P为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左、右焦点,I为△F1PF2的内心,若2(S${\;}_{△P{F}_{1}I}$-S${\;}_{△P{F}_{2}I}$)=S${\;}_{△{F}_{1}{F}_{2}I}$,则该双曲线的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.比较大小:0.75-0.1>0.750.1(填“>”、“<”或“=”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|x>1},N={x|x2-2x≥0},则M∩N=(  )
A.(-∞,0]∪(1,+∞)B.(1,2]C.(1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从162人中抽取一个样本容量为16的样本,现用系统抽样的方法则必须从162人中剔除多少人(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线ax-by+c=0(ab≠0)与圆x2+y2=1相切,则三条边长分别为|a|,|b|,|c|的三角形(  )
A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在

查看答案和解析>>

同步练习册答案