精英家教网 > 高中数学 > 题目详情
10.在直角坐标系xOy中,直线C1的参数方程是$\left\{\begin{array}{l}{x=4-\frac{\sqrt{2}}{2}t}\\{y=-1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C2:ρ=4sinθ
(Ⅰ)求C1的普通方程和C2的直角坐标方程
(Ⅱ)判断直线C1与曲线C2的位置关系,若相交,求出弦长.

分析 (Ⅰ)消去t,求出C1的方程即可,由ρ2=x2+y2,ρsinθ=y,求出c2的方程即可;(Ⅱ)联立方程组,求出弦长即可.

解答 解:(Ⅰ)∵C1的参数方程是$\left\{\begin{array}{l}{x=4-\frac{\sqrt{2}}{2}t}\\{y=-1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),
∴C1的方程是:x+y=3;
由C2:ρ=4sinθ,
ρ2=x2+y2,ρsinθ=y,
得x2+y2=4y,
故x2+(y-2)2=4;
(Ⅱ)由$\left\{\begin{array}{l}{x+y=3}\\{{x}^{2}{+(y-2)}^{2}=4}\end{array}\right.$,
得2x2-2x-3=0,
故△=28>0,
故直线和圆相交,
x1+x2=5,x1x2=$\frac{9}{2}$,
故弦长d=$\sqrt{{{(x}_{1}{+x}_{2})}^{2}-{{4x}_{1}x}_{2}}$=$\sqrt{7}$.

点评 本题考查了极坐标方程,参数方程以及直角坐标方程的转化,考查直线和圆的位置关系,考查弦长问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知角α的顶点在坐标原点O,始边与x轴的正半轴重合,终边过点P(1,7).
(1)求cos($\frac{π}{4}$+α)的值;
(2)若$\frac{3π}{4}$<β<$\frac{5π}{4}$,sin(β-$\frac{π}{4}$)=$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合M={x|2x(x-2)8},N={x|1n|x-1|>0},则M∩CN=(  )
A.(-1,3)B.[0,2]C.(-1,0]∪[2,3)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正实数x,y,z满足x+y+z=1,$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$=10,则xyz的最大值为$\frac{4}{125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某公司庆祝活动需从甲、乙、丙等5名志愿者中选2名担任翻译,2名担任向导,还有1名机动人员,为来参加活动的外事人员提供服务,并且翻译和向导都必须有一人选自甲、乙、丙,则不同的选法有(  )
A.20 种B.22 种C.24 种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.椭圆2x2+y2=6的焦点坐标是(  )
A.(±$\sqrt{3}$,0)B.(0,±$\sqrt{3}$)C.(±3,0)D.(0,±3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在底面为平行四边形的四棱锥P-ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,点E是PD的中点.
(1)求证:AC⊥PB;
(2)当二面角E-AC-D的大小为45°时,求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.张邱建,北魏人,约公元5世纪,古代著名数学家,一生从事数学研究,造诣很深,其代表作《张邱建算经》采用问答式,调理精密,文词古雅,是世界数学资料库中的一份异常.其卷上第22题有一个“女子织布”问题:今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.问日益几何.”翻译过来的意思是意思是某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天宫织布390尺,则该女子织布每天增加(  )尺?
A.$\frac{16}{29}$B.$\frac{8}{15}$C.$\frac{16}{31}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若cosx=-$\frac{2}{3}$,当x∈[0,2π),求角x.

查看答案和解析>>

同步练习册答案