精英家教网 > 高中数学 > 题目详情
9.若cosx=-$\frac{2}{3}$,当x∈[0,2π),求角x.

分析 利用反三角函数求解函数的值即可.

解答 解:cosx=-$\frac{2}{3}$,当x∈[0,2π),
可得x=π±arccos$\frac{2}{3}$.

点评 本题考查反三角函数的求解,三角方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,直线C1的参数方程是$\left\{\begin{array}{l}{x=4-\frac{\sqrt{2}}{2}t}\\{y=-1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C2:ρ=4sinθ
(Ⅰ)求C1的普通方程和C2的直角坐标方程
(Ⅱ)判断直线C1与曲线C2的位置关系,若相交,求出弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从图中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
分组频数频率
[50,60)50.05
[60,70)a0.20
[70,80)35b
[80,90)250.25
[90,100)150.15
合计1001.00
(1)求a,b的值并估计这100名考生成绩的平均分;
(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题:?x∈R,x2+x-1≥0的否定是(  )
A.?x0∈R,x02+x0-1≥0B.?x0∈R,x02+x0-1<0
C.?x∈R,x2+x-1≤0D.?x∈R,x2+x-1<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在长方体ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,点E为AA1中点,则三棱锥E-D1DB1的体积为3cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=tan(ωx-$\frac{π}{3}$)(ω>0)的最小正周期为$\frac{π}{2}$,则函数f(x)的一个单调递增区间是(  )
A.(-$\frac{π}{6}$,$\frac{π}{12}$)B.($\frac{π}{4}$,$\frac{7π}{12}$)C.($\frac{π}{3}$,$\frac{5π}{6}$)D.(-$\frac{7π}{12}$,-$\frac{π}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图1是四棱锥的直观图,其正(主)视图和侧(左)视图均为直角三角形,俯视图外框为矩形,相关数据如图2所示.

(1)设AB中点为O,在直线PC上找一点E,使得OE∥平面PAD,并说明理由;
(2)若直线PB与底面ABCD所成角的正切值为$\frac{{2\sqrt{5}}}{5}$,求四棱锥P-ABCD的外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=${∫}_{0}^{1}$$\sqrt{x}$dx,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$x2dx,则a,b,c的大小关系是(  )
A.c<b<aB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,△AOB为等腰直角三角形,OA=l,OC为斜边AB的髙,点P在射线OC 上,则$\overrightarrow{AP}$•$\overrightarrow{OP}$的最小值为(  )
A.-1B.-$\frac{1}{4}$C.-$\frac{1}{8}$D.0

查看答案和解析>>

同步练习册答案