| A. | -1 | B. | -$\frac{1}{4}$ | C. | -$\frac{1}{8}$ | D. | 0 |
分析 根据平面向量的线性运算与数量积运算,设|$\overrightarrow{OP}$|=t,利用t表示$\overrightarrow{AP}$•$\overrightarrow{OP}$,求二次函数的最小值即可.
解答
解:由$\overrightarrow{AP}$=$\overrightarrow{OP}$-$\overrightarrow{OA}$,
设|$\overrightarrow{OP}$|=t,t≥0,
则$\overrightarrow{AP}$•$\overrightarrow{OP}$=$\overrightarrow{OP}$2-$\overrightarrow{OA}$•$\overrightarrow{OP}$
=t2-1×t×cos$\frac{π}{4}$
=t2-$\frac{\sqrt{2}}{2}$t
=(t-$\frac{\sqrt{2}}{4}$)2-$\frac{1}{8}$;
所以,当t=$\frac{\sqrt{2}}{4}$时,$\overrightarrow{AP}$•$\overrightarrow{OP}$取得最小值为-$\frac{1}{8}$.
故选:C.
点评 本题考查了平面向量的三角形法则,向量数量积的运算性质以及二次函数的单调性问题,是综合性题目.
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{4}$个单位长度 | B. | 向右平移$\frac{π}{2}$个单位长度 | ||
| C. | 向左平移$\frac{π}{4}$个单位长度 | D. | 向左平移$\frac{π}{2}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{8}-\frac{y^2}{10}=1$ | B. | $\frac{x^2}{5}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{5}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com