精英家教网 > 高中数学 > 题目详情
7.在△ABC中,边a,b,c分别是角A,B,C的对边,且满足等式bcosC=(2a+c)cos(π-B)
(Ⅰ)求角B的大小
(Ⅱ)若b=$\sqrt{13}$,且S△ABC=$\frac{3\sqrt{3}}{4}$,求a+c.

分析 (Ⅰ)由正弦定理得:sinBcosC=(2sinA+sinC)•(-cosB),再由正弦加法定理、诱导公式推导出cosB=-$\frac{1}{2}$,由此能求出B.
(Ⅱ)由三角形面积公式得到ac=3,由余弦定理得b2=a2+c2-2accosB=(a+c)2-2ac-2accosB,由此能求出a+c.

解答 解:(Ⅰ)∵在△ABC中,边a,b,c分别是角A,B,C的对边,
且满足等式bcosC=(2a+c)cos(π-B),
∴由正弦定理得:sinBcosC=(2sinA+sinC)•(-cosB),
∴sinBcosC+cosBsinC=-2sinAcosB,
∴sin(B+C)=-2sinAcosB,
∴sinA=-2sinAcosB,
∵sinA≠0,∴cosB=-$\frac{1}{2}$,
∵0<B<π,∴B=$\frac{2π}{3}$.
(Ⅱ)∵B=$\frac{2π}{3}$,b=$\sqrt{13}$,且S△ABC=$\frac{3\sqrt{3}}{4}$,
∴S△ABC=$\frac{1}{2}acsinB$=$\frac{\sqrt{3}}{4}$ac=$\frac{3\sqrt{3}}{4}$,解得ac=3,
由余弦定理得:
b2=a2+c2-2accosB=(a+c)2-2ac-2accosB,
∴13=(a+c)2-6-6×(-$\frac{1}{2}$),
解得a+c=4.

点评 本题考查角的大小、两边和的求法,考查正弦定理、余弦定理、三角形面积公式、诱导公式、正弦加法定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.命题:?x∈R,x2+x-1≥0的否定是(  )
A.?x0∈R,x02+x0-1≥0B.?x0∈R,x02+x0-1<0
C.?x∈R,x2+x-1≤0D.?x∈R,x2+x-1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=${∫}_{0}^{1}$$\sqrt{x}$dx,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$x2dx,则a,b,c的大小关系是(  )
A.c<b<aB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$.
(1)当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,讨论函数y=f(x)的单调性;
(2)已知ω>0,函数$g(x)=f(\frac{ωx}{2}-\frac{π}{12})$,若函数g(x)在区间$[{-\frac{2π}{3},\frac{π}{6}}]$上是增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线l1:x-2y+1=0与直线l2:x+ay-1=0平行,则l1与l2的距离为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x,y∈(0,+∞),x2+y2=2x+2y.
(1)求$\frac{1}{x}$+$\frac{1}{y}$的最小值;
(2)是否存在x,y,满足(x+1)(y+1)=10?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,△AOB为等腰直角三角形,OA=l,OC为斜边AB的髙,点P在射线OC 上,则$\overrightarrow{AP}$•$\overrightarrow{OP}$的最小值为(  )
A.-1B.-$\frac{1}{4}$C.-$\frac{1}{8}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.曲线f(x)=2x2+x-2在P0处的切线平行于直线y=5x-1,则点P0坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是一个四面体的三视图,则该四面体的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

同步练习册答案