精英家教网 > 高中数学 > 题目详情
2.若直线l1:x-2y+1=0与直线l2:x+ay-1=0平行,则l1与l2的距离为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

分析 利用直线平行可得a=-2,代入距离公式即可得出答案.

解答 解:∵直线l1与直线l2平行,
∴a=-2,
∴l1与l2的距离为d=$\frac{|1+1|}{\sqrt{1+4}}$=$\frac{2\sqrt{5}}{5}$.
故选B.

点评 本题考查了直线的平行关系,距离公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设f(x)=e2x-3,g(x)=ln(x+3),则不等式f(g(x))-g(f(x))≤11的解集为(  )
A.[-5,1]B.(-3,1]C.[-1,5]D.(-3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2$\sqrt{3}$.
(Ⅰ)求直线AM与平面BCD所成角的大小;
(Ⅱ)求三棱锥A-BMD的体积;
(Ⅲ)求平面ACM与平面BCD所成二面角的正弦值.(理科生必做,文科生选做)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要得到函数y=sin2x的图象,只需将函数y=cos2x的图象上的所有点沿x轴(  )
A.向右平移$\frac{π}{4}$个单位长度B.向右平移$\frac{π}{2}$个单位长度
C.向左平移$\frac{π}{4}$个单位长度D.向左平移$\frac{π}{2}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥V-ABC中,平面VAB⊥平面ABC,平面VAC⊥平面ABC
(Ⅰ)求证:VA⊥平面ABC
(Ⅱ)已知AC=3,AB=2BC=2$\sqrt{3}$,三棱锥V-ABC的外接球的半径为3,求二面角V-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,边a,b,c分别是角A,B,C的对边,且满足等式bcosC=(2a+c)cos(π-B)
(Ⅰ)求角B的大小
(Ⅱ)若b=$\sqrt{13}$,且S△ABC=$\frac{3\sqrt{3}}{4}$,求a+c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,Q为AB的中点
(Ⅰ)证明;CQ⊥平面ABE
(Ⅱ)求多面体ACED的体积
(Ⅲ)求二面角A-DE-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别为角A,B,C的对边,且3bcosB=acosC+ccosA,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2.
(1)求cosB及△ABC的面积S;
(2)若b=3,且a>c,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$3\sqrt{3}$C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案