精英家教网 > 高中数学 > 题目详情
2.如图是一个四面体的三视图,则该四面体的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

分析 由已知三视图得到几何体为棱长为2的正方体切去部分后得到四面体,计算四面体的体积.

解答 解:由已知三视图得到几何体如图四面体A-BCD,是由棱长为2 的正方体切割得到,其中AE=2$\sqrt{2}$,CD=$\sqrt{2}$,梯形ADCE的面积为$\frac{1}{2}×(\sqrt{2}+2\sqrt{2})×\frac{3\sqrt{2}}{2}$,B到梯形ADCE的距离为$\frac{1}{3}$,
所以四面体的体积为$\frac{1}{3}$VB-ADCE
=$\frac{1}{3}×\frac{1}{3}×(\sqrt{2}+2\sqrt{2})×\frac{3\sqrt{2}}{2}×\frac{1}{2}×\frac{1}{3}=\frac{1}{6}$;
故选C.

点评 本题考查了由几何体的三视图求体积;关键是由三视图正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,边a,b,c分别是角A,B,C的对边,且满足等式bcosC=(2a+c)cos(π-B)
(Ⅰ)求角B的大小
(Ⅱ)若b=$\sqrt{13}$,且S△ABC=$\frac{3\sqrt{3}}{4}$,求a+c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{{\sqrt{5}}}{2}$x,且与椭圆$\frac{x^2}{12}+\frac{y^2}{3}$=1有公共焦点,则C的方程为(  )
A.$\frac{x^2}{8}-\frac{y^2}{10}=1$B.$\frac{x^2}{5}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-\frac{y^2}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=loga(1-ax)(a>0,a≠1),则不等式f(x)>f-1(1)的解为(  )
A.(-1,0)B.(0,1]C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$3\sqrt{3}$C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,内角A、B、C的对边分别为a,b,c,若b=2,cosB=$\frac{1}{4}$,sinC=2sinA,则α=1,△ABC的面积S=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知动圆M经过点A(-2,0),且与圆B:(x-2)2+y2=4相内切(B为圆心).
(1)求动圆的圆心M的轨迹C的方程;
(2)过点B且斜率为2的直线与轨迹C交于P,Q两点,求△APQ的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的正视图和俯视图如图所示,则其几何体的表面积为(  )
A.$\frac{2+\sqrt{2}}{2}$B.$\frac{2+\sqrt{3}}{2}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若关于x的方程$\frac{lnx}{x}$-a=0(e为自然对数的底数)有实数根,则实数a的取值范围是(-∞,$\frac{1}{e}$].

查看答案和解析>>

同步练习册答案