精英家教网 > 高中数学 > 题目详情
16.曲线f(x)=2x2+x-2在P0处的切线平行于直线y=5x-1,则点P0坐标为(1,1).

分析 设出切点坐标,求出函数在切点处的导数值,利用切线平行于直线y=5x-1得到切点处的导数值是5,求出切点横坐标,代入曲线f(x)=2x2+x-2求得切点纵坐标.

解答 解:设P0(x0,y0),
由f(x)=2x2+x-2,得f′(x)=4x+1,
∴f′(x0)=4x0+1,
∵曲线f(x)在点P0处的切线平行于直线y=5x-1,
∴4x0+1=5,解得:x0=1.
当x0=1时,y0=2×12+1-2=1;
∴点P0坐标为(1,1).
故答案为:(1,1).

点评 本题考查利用导数研究曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是该点处的导数值,考查了两直线平行与斜率之间的关系,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义在[-3,0)∪(0,3]上的奇函数,当x∈(0,3]时,f(x)的图象如图所示,那么满足不等式f(x)≥2x-1的取值范围是(  )
A.[-2,1]B.[-3,-2]∪(0,3]C.[-2,0]∪(1,4]D.[-3,0]∪[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,边a,b,c分别是角A,B,C的对边,且满足等式bcosC=(2a+c)cos(π-B)
(Ⅰ)求角B的大小
(Ⅱ)若b=$\sqrt{13}$,且S△ABC=$\frac{3\sqrt{3}}{4}$,求a+c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a≥b≥0,求证:a3+b3≥$\sqrt{ab}$(a2+b2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别为角A,B,C的对边,且3bcosB=acosC+ccosA,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2.
(1)求cosB及△ABC的面积S;
(2)若b=3,且a>c,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={ x|x≥-$\frac{1}{2}$},N={x|1-x2≥0},则M∪N=(  )
A.[-$\frac{1}{2}$,1]B.[-1,1]C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{{\sqrt{5}}}{2}$x,且与椭圆$\frac{x^2}{12}+\frac{y^2}{3}$=1有公共焦点,则C的方程为(  )
A.$\frac{x^2}{8}-\frac{y^2}{10}=1$B.$\frac{x^2}{5}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-\frac{y^2}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=loga(1-ax)(a>0,a≠1),则不等式f(x)>f-1(1)的解为(  )
A.(-1,0)B.(0,1]C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的正视图和俯视图如图所示,则其几何体的表面积为(  )
A.$\frac{2+\sqrt{2}}{2}$B.$\frac{2+\sqrt{3}}{2}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

同步练习册答案