精英家教网 > 高中数学 > 题目详情
4.在长方体ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,点E为AA1中点,则三棱锥E-D1DB1的体积为3cm3

分析 根据体积公式V${\;}_{E-{D}_{1}D{B}_{1}}$=V${\;}_{{B}_{1}-DE{D}_{1}}$=$\frac{1}{3}{S}_{△DE{D}_{1}}•{A}_{1}{B}_{1}$计算.

解答 解:V${\;}_{E-{D}_{1}D{B}_{1}}$=V${\;}_{{B}_{1}-DE{D}_{1}}$=$\frac{1}{3}{S}_{△DE{D}_{1}}•{A}_{1}{B}_{1}$=$\frac{1}{3}×\frac{1}{2}×2×3×3$=3.
故答案为3.

点评 本题考查了棱锥的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某公司庆祝活动需从甲、乙、丙等5名志愿者中选2名担任翻译,2名担任向导,还有1名机动人员,为来参加活动的外事人员提供服务,并且翻译和向导都必须有一人选自甲、乙、丙,则不同的选法有(  )
A.20 种B.22 种C.24 种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.做一个无盖的圆柱形水桶,若要使其体积是64π,且用料最省,则圆柱的底面半径为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)=e2x-3,g(x)=ln(x+3),则不等式f(g(x))-g(f(x))≤11的解集为(  )
A.[-5,1]B.(-3,1]C.[-1,5]D.(-3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2cos2θ-4ρsinθ=4
(1)若α=$\frac{π}{4}$,求直线l的极坐标方程以及曲线C的直角坐标方程:
(2)若直线l与曲线C交于M、N两点,且|MN|=12,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若cosx=-$\frac{2}{3}$,当x∈[0,2π),求角x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.点M的柱坐标为(4,$\frac{π}{3}$,4),则它的直角坐标为(  )
A.(-6,$2\sqrt{3}$,4)B.(2,$2\sqrt{3}$,4)C.(-6,-$2\sqrt{3}$,4)D.(-6,$2\sqrt{3}$,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2$\sqrt{3}$.
(Ⅰ)求直线AM与平面BCD所成角的大小;
(Ⅱ)求三棱锥A-BMD的体积;
(Ⅲ)求平面ACM与平面BCD所成二面角的正弦值.(理科生必做,文科生选做)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,Q为AB的中点
(Ⅰ)证明;CQ⊥平面ABE
(Ⅱ)求多面体ACED的体积
(Ⅲ)求二面角A-DE-B的正切值.

查看答案和解析>>

同步练习册答案