精英家教网 > 高中数学 > 题目详情
某次联欢会要安排三个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是(  )
A、72B、120
C、144D、168
考点:计数原理的应用
专题:计算题
分析:根据题意,分2步进行分析:①、先将三个歌舞类节目全排列,②、因为三个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.
解答: 解:分2步进行分析:
1、先将三个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,
2、因为三个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,
分2种情况讨论:
①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,
排好后,最后1个小品类节目放在2端,有2种情况,
此时同类节目不相邻的排法种数是6×4×2=48种;
②将中间2个空位安排2个小品类节目,有A22=2种情况,
排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,
此时同类节目不相邻的排法种数是6×2×6=72种;
则同类节目不相邻的排法种数是48+72=120,
故选:B.
点评:本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=
 
时,{an}的前n项和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z满足(z-2i)(2-i)=5,则z=(  )
A、2+3iB、2-3i
C、3+2iD、3-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=(  )
A、∅B、{2}
C、{0}D、{-2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R,则“a>b”是“a|a|>b|b|”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是(  )
A、[-1,1]
B、[-
1
2
1
2
]
C、[-
2
2
]
D、[-
2
2
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b>0,c<d<0,则一定有(  )
A、
a
d
b
c
B、
a
d
b
c
C、
a
c
b
d
D、
a
c
b
d

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2
F1F2
丨DF1
=2
2
,△DF1F2的面积为
2
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.
(Ⅰ)若|AB|=4,△ABF2的周长为16,求|AF2|;
(Ⅱ)若cos∠AF2B=
3
5
,求椭圆E的离心率.

查看答案和解析>>

同步练习册答案