精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=cos$\frac{x}{4}$•cos($\frac{π}{2}$-$\frac{x}{4}$)•cos(π-$\frac{x}{2}$),将函数f(x)在(0,+∞)的所有极值点的横坐标从小到大排成一数列,记为{an}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{bn}前n项和Tn

分析 (Ⅰ)利用诱导公式及正弦的二倍角公式即可函数f(x)的解析式化简;f′(x)=-$\frac{1}{4}$cosx,由f′(x)=0可求得极值点从小到大依次为$\frac{π}{2}$,$\frac{3π}{2}$,$\frac{5π}{2}$,…$\frac{(2n-1)π}{2}$,于是可得数列{an}的通项公式;
(Ⅱ)求出数列{bn}的通项公式,再根据裂项求和,从而可求数列{bn}前n项和Tn

解答 解:(Ⅰ)f(x)=-cos$\frac{x}{4}$•sin$\frac{x}{4}$•cos$\frac{x}{2}$=-$\frac{1}{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$=-$\frac{1}{4}$sinx.
∴f′(x)=-$\frac{1}{4}$cosx,
令f′(x)=0得:cosx=0,
∴x=kπ+$\frac{π}{2}$,k∈Z.
又x>0,
∴极值点从小到大排列依次为:$\frac{π}{2}$,$\frac{3π}{2}$,$\frac{5π}{2}$,…$\frac{(2n-1)π}{2}$,
故数列{an}的通项公式为:an=$\frac{(2n-1)π}{2}$.
(Ⅱ)由(Ⅰ)知,bn=$\frac{1}{\frac{(2n-1)π}{2}•\frac{(2n+1)π}{2}}$=$\frac{4}{{π}^{2}}$•$\frac{1}{(2n-1)(2n+1)}$=$\frac{2}{{π}^{2}}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$).
Tn=$\frac{2}{{π}^{2}}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)]=$\frac{2}{{π}^{2}}$(1-$\frac{1}{2n+1}$)=$\frac{4n}{{π}^{2}(2n+1)}$

点评 本题考查两角和与差的正弦函数,考查函数极值点的应用,突出考查数列的裂项法求和,考查转化思想与综合应用能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在体积为$\frac{243π}{16}$同一球面上,则PA=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知A,B是双曲线$\frac{{x}^{2}}{4}$-y2=1的两个顶点,点P是双曲线上异于A,B的一点,连接PO(O为坐标原点)交椭圆$\frac{{x}^{2}}{4}$+y2=1于点Q,如果设直线PA,PB,QA的斜率分别为k1,k2,k3,且k1+k2=-$\frac{15}{8}$,假设k2>0,则k3的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x),对任意的实数x、y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)在区间[a,b]上(  )
A.有最大值$f(\frac{a+b}{2})$B.有最小值$f(\frac{a+b}{2})$C.有最大值f(a)D.有最小值f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=Asin(ωx+φ)$(A>0,\;|φ|<\frac{π}{2})$的图象如图所示,为了得到f(x)图象,则只需将g(x)=sin2x的图象(  )
A.向右平移$\frac{π}{6}$个长度单位B.向左平移$\frac{π}{6}$个长度单位
C.向右平移$\frac{π}{3}$个长度单位D.向左平移$\frac{π}{3}$个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数a,b,c同时满足以下三个条件:
①(b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$)2+[c-m(a2+a-m2-m)]2=0;
②对任意的a∈R,b<0或c<0;
③存在a∈(-∞,-1),使得bc<0.
则实数m的取值范围为(  )
A.(-2,0)B.(-2,-1)C.(-3,-2)D.(-4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y=x2,x∈[1,2]与函数y=x2,x∈[-2,-1]即为“同族函数”.下面函数的解析式也能够被用来构造“同族函数”的是(  )
A.y=xB.y=|x-3|C.y=2xD.y=log${\;}_{\frac{1}{2}}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某城市随机抽取一年内100 天的空气质量指数(AQI)的监测数据,结果统计如表:
API[0,50](50,100](100,150](150,200](200,300]>300
空气质量轻度污染轻度污染中度污染重度污染
天数61418272015
(Ⅰ)若本次抽取的样本数据有30 天是在供暖季,其中有8 天为严重污染.根据提
供的统计数据,完成下面的2×2 列联表,并判断是否有95%的把握认为“该城市本年的
空气严重污染与供暖有关”?
非重度污染严重污染合计
供暖季22830
非供暖季63770
合计8515100
(Ⅱ)已知某企业每天的经济损失y(单位:元)与空气质量指数x 的关系式为y=$\left\{\begin{array}{l}{0,0≤x≤100}\\{400,100<x≤300}\\{2000,x>300}\end{array}\right.$试估计该企业一个月(按30 天计算)的经济损失的数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

同步练习册答案