精英家教网 > 高中数学 > 题目详情
9.若实数a,b,c同时满足以下三个条件:
①(b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$)2+[c-m(a2+a-m2-m)]2=0;
②对任意的a∈R,b<0或c<0;
③存在a∈(-∞,-1),使得bc<0.
则实数m的取值范围为(  )
A.(-2,0)B.(-2,-1)C.(-3,-2)D.(-4,-2)

分析 ①根据平方的性质得到b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$=0且c-m(a2+a-m2-m)=0;②等价于对于任意a≥1,c<0,③等价于存在a<-1,使c>0,进而可求实数m的取值范围.

解答 解:①由①(b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$)2+[c-m(a2+a-m2-m)]2=0;
得b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$=0且c-m(a2+a-m2-m)=0;
即b=-$\frac{1}{{3}^{a}}$+$\frac{1}{3}$,c=m(a2+a-m2-m),
当a<1时,b=-$\frac{1}{{3}^{a}}$+$\frac{1}{3}$<0
当a≥1时,b≥0,
所以②等价于对于任意a≥1,c<0,③等价于存在a<-1,使c>0,
c=m(a2+a-m2-m)=m(a+$\frac{1}{2}$)2-$\frac{1}{4}$m-m(m2-m),
当a=1时c<0,
即m<0,且m+m-m2 (m+1)<0,
也即-2<m<0;
当存在a<-1,使c>0,时,
由以上知m<0,此时当a=-1时c>0,
即m-m-m2 (m+1)>0,得m<-1;
综上所述得-2<m<-1.
故选:B

点评 本题考查求实数m的取值范围,考查进行简单的合情推理,根据平方的性质以及不等式的性质进行转化是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.5名战士站成一排,其中甲不站在最左边的不同站法的种数为96.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在数列{an}中,an=n2cosnπ(n∈N*),则a1+a2+…+a100=5050.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A=$\{x|{x^2}-x-2<0\},\;B=\{x|\frac{x+2}{x-2}<0\}$,则集合A、B的关系为(  )
A.A⊆BB.B⊆AC.A?BD.B?A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=cos$\frac{x}{4}$•cos($\frac{π}{2}$-$\frac{x}{4}$)•cos(π-$\frac{x}{2}$),将函数f(x)在(0,+∞)的所有极值点的横坐标从小到大排成一数列,记为{an}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow{b}$=(1,-2),若(-$\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$+k$\overrightarrow{b}$),则实数k的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.有2000名网购者在11月11日当天于某购物网站进行网购消费(消费金额不超过1000元),其中有女士1100名,男士900名、该购物网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分析,如下表:(消费金额单位:元)
女士消费情况:
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
人数10253530x
男士消费情况:
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
人数153025y5
(1)计算x,y的值;在抽出的200名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者都是男士的概率;
(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“是否为‘网购达人’与性别有关?”
女士男士总计
网购达人
非网购达人
总计
附:
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log3(ax+b)的部分图象如图所示
(Ⅰ)求f(x)的解析式
(Ⅱ)求f(x)在[4,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,棱长为1的正方体ABCD-A1B1C1D1中,E是AA1的中点.
(1)求证:A1C∥平面BDE;
(2)求二面角E-BD-A的正切值.

查看答案和解析>>

同步练习册答案