| A. | 有最大值$f(\frac{a+b}{2})$ | B. | 有最小值$f(\frac{a+b}{2})$ | C. | 有最大值f(a) | D. | 有最小值f(a) |
分析 可令x=y=0,可得f(0)=0,再令y=-x,可得f(-x)=-f(x),即f(x)为奇函数;利用函数单调性的定义,先设x1<x2得x2-x1>0,结合题意得f(x2-x1)<0,再结合(x+y)=f(x)+f(y)得f(x2-x1)=f(x2)+f(-x1)<0,最后利用函数为奇函数得到f(x2)-f(x1)<0,得到函数为R上的减函数.由此不难得到正确选项.
解答 解:对任意的实数x、y,有f(x+y)=f(x)+f(y),
令x=y=0,可得f(0)=2f(0),即f(0)=0,
再令y=-x,可得f(0)=f(x)+f(-x),
即f(-x)=-f(x),可得f(x)为奇函数;
任取x1<x2,即x2-x1>0,
∵当x>0时,f (x)<0,
∴f(x2-x1)<0,
即f(x2)+f(-x1)<0;
∵f (x)是奇函数,
∴有f(x2)-f(x1)<0,
∴f(x2)<f(x1)
∴f(x)在R上递减.
∴f(x)在区间[a,b]上有最大值f(a),最小值f(b).
故选:C.
点评 本题以一个抽象函数为例,考查了函数奇偶性和单调性的判断与运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 3.14 | C. | 3.2 | D. | 3.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A⊆B | B. | B⊆A | C. | A?B | D. | B?A |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
| 人数 | 10 | 25 | 35 | 30 | x |
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
| 人数 | 15 | 30 | 25 | y | 5 |
| 女士 | 男士 | 总计 | |
| 网购达人 | |||
| 非网购达人 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com