精英家教网 > 高中数学 > 题目详情
已知a,b∈R+,求证:a+b≤
2
a2+b2
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:利用基本不等式可得a2+b2≥2ab,从而可得2(a2+b2)≥(a+b)2,即可证明结论.
解答: 解:∵a,b∈R+,a2+b2≥2ab,
∴2(a2+b2)≥a2+b2+2ab,
∴2(a2+b2)≥(a+b)2
∴a+b≤
2
a2+b2
点评:本题考查不等式的证明,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=3,an-1=17(n≥2),Sn=100,则n的值为(  )
A、10B、9C、8D、11

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
3x+1
,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(1)求证:数列{
1
an
}是等差数列;
(2)记Sn=a1a2+a2a3+…+anan+1,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

“x<1”是“log2(x+1)<1”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

经过双曲线
x2
a2
-
y2
b2
=1(a>b>0)的右焦点为F作该双曲线一条渐近线的垂线与两条渐近线相交于M,N两点,若O是坐标原点,△OMN的面积是
2
3
a2
,则该双曲线的离心率是(  )
A、2
B、
5
C、
5
2
D、
6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C1:y2=4x,双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0),若C1的焦点恰为C2的右焦点,则2a+b的最大值为(  )
A、
5
B、5
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)有相同的焦点F,点A,B是两曲线的交点,若(
OA
+
OB
)•
AF
=0,则双曲线的离心率为(  )
A、
2
+2
B、
5
+1
C、
3
+1
D、
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额(元)频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合计1001.00
(Ⅰ)确定x,y,p,q的值,并补全频率分布直方图;
(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
合计100
②并据此列联表判断,是否有97.5%的把握认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=3-x与坐标轴所围图形的面积为
 

查看答案和解析>>

同步练习册答案