精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+2ax+4(0<a<3),其图象上两点的横坐标x1,x2满足x1<x2,且x1+x2=1-a,则有(  )
A、f(x1)>f(x2
B、f(x1)=f(x2
C、f(x1)<f(x2
D、大小不确定
考点:二次函数的性质
专题:计算题,函数的性质及应用
分析:运用作差法比较,将f(x1)-f(x2)化简整理得到a(x1-x2)(x1+x2+2),再由条件即可判断.
解答: 解:∵函数f(x)=ax2+2ax+4,
∴f(x1)-f(x2)=ax12+2ax1+4-(ax22+2ax2+4)
=a(x12-x22)+2a(x1-x2
=a(x1-x2)(x1+x2+2)
∵x1+x2=1-a,
∴f(x1)-f(x2)=a(3-a)(x1-x2),
∵0<a<3,x1<x2
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
故选:C.
点评:本题考查作差法比较函数值的大小,考查基本的化简整理的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1,        x<1
1
f(x+1)
,x≥1
,则f(6)的值为(  )
A、
1
2
B、0
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列对应法则中,能建立从集合A={1,2,3,4,5}到集合B={0,3,8,15,24}的映射的是(  )
A、f:x→x2-x
B、f:x→x+(x-1)2
C、f:x→x2+x
D、f:x→x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(
x
+1)=x+2
x
,则f(x)的解析式可取为(  )
A、x2+1(x≥0)
B、x2-1(x≥1)
C、x2-1(x≥0)
D、x2+1(x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(-70°)=k,则tan110°的值为(  )
A、
k
1-k2
B、-
k
1-k2
C、
1-k2
k
D、-
1-k2
k

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+y=a与圆x2+y2=4交于两点A、B,且
OA
OB
=0,其中O为坐标原点,则实数a的值为(  )
A、2
B、±2
C、-2
D、±
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列集合中,表示同一集合的是(  )
A、M={(3,2)},N={(2,3)}
B、M={3,2},N={(3,2)}
C、M={(x,y)|x+y=1},N={y|x+y=1}
D、M={3,2},N={2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,4Sn=an2+2an且an>0,又点(an,bn)在函数f(x)=2x的图象上(其中n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)设cn=an•sin2
2
)-bn•cos2
2
)(n∈N*),求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

若0≤x≤2,求函数y=4 x-
1
2
-3×2x+5的最大值和最小值及相应的x的值.

查看答案和解析>>

同步练习册答案