精英家教网 > 高中数学 > 题目详情
16.如图所示,正方形ABCD和正方形DEFG,原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则直线BE的斜率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$1-\frac{{\sqrt{2}}}{2}$C.$2+\sqrt{2}$D.$2-\sqrt{2}$

分析 设正方形ABCD和正方形DEFG的边长分别为a,b(a<b),求出B,E的坐标,即可求出直线BE的斜率.

解答 解:设正方形ABCD和正方形DEFG的边长分别为a,b(a<b),
由题可得$C({\frac{a}{2},\;\;-a})$,$F({\frac{a}{2}+b,\;\;b})$,则$\left\{\begin{array}{l}{a^2}=pa,\;\;\\{b^2}=2p({\frac{a}{2}+b}),\;\;\end{array}\right.$
解得$a=p,\;\;b=(\sqrt{2}+1)p$,
则$B({-\frac{a}{2},\;\;-a})$,$E({\frac{a}{2}+b,\;\;0})$,
直线BE的斜率$k=\frac{0-(-a)}{{\frac{a}{2}+b-({-\frac{a}{2}})}}=\frac{a}{a+b}=\frac{p}{{(2+\sqrt{2})p}}=1-\frac{{\sqrt{2}}}{2}$,
故选B.

点评 本题考查抛物线的方程,考查直线斜率的计算,求出B,E的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.(1)已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),$\overrightarrow{c}$=(3,4).若λ为实数,($\overrightarrow{a}$+λ$\overrightarrow{b}$)∥$\overrightarrow{c}$,求λ的值.
(2)已知非零向量$\overrightarrow{{e}_{1}}$和$\overrightarrow{{e}_{2}}$不共线,欲使向量k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$共线,试确定实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}的前n项和为Sn,a1=1,Sn=$\frac{{{a_{n+1}}-1}}{2}({n∈{N^*}})$,
(1)求{an}的通项公式;
(2)等差数列{bn}的各项均为正数,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=2x3+3ax2+3bx在x=1及x=2时取得极值,则b的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)为定义域为R的奇函数,且f(x)=f(2-x),当x∈[0,1]时,f(x)=sinx,则函数g(x)=|cos(πx)|-f(x)在区间$[-\frac{5}{2},\frac{9}{2}]$上的所有零点的和为(  )
A.6B.7C.13D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{cosA}{cosB+cosC}$=$\frac{a}{b+c}$,则$\sqrt{3}$cosC-2sinB的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等比数列{an}的公比q>1,且a1+a3=20,a2=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{n}{a_n}$,Sn是数列{bn}的前n项和,对任意正整数n不等式${S_n}+\frac{n}{{{2^{n+1}}}}>{(-1)^n}•a$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某统计部门就“A市汽车价格区间的购买意愿”对100人进行了问卷调查,并将结果制作成频率分布直方图,如图,已知样本中数据在区间[10,15)上的人数与数据在区间[25,30)的人数之比为3:4.
(Ⅰ)求a,b的值.
(Ⅱ)估计A市汽车价格区间购买意愿的中位数;
(Ⅲ)按分层抽样的方法在数据区间[10,15)和[20,25)上接受调查的市民中选取6人参加座谈,再从这6人中随机选取2人作为主要发言人,求在[10,15)的市民中至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数$y=sin(2x+\frac{π}{6})$的图象向左平移m(m>0)个单位长度,得到函数y=f(x)图象在区间$[-\frac{π}{12},\frac{5π}{12}]$上单调递减,则m的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案