精英家教网 > 高中数学 > 题目详情
7.已知函数:$f(x)=\frac{x+1-a}{x-a}(a∈R且x≠a)$.
(1)若a=1,求f(-16)+f(-15)+f(-14)+…+f(17)+f(18)的值;
(2)当f(x)的定义域为[a-2,a-1]时,求f(x)的值域;
(3)设函数g(x)=x2-|(x-a)f(x)|,求g(x)的最小值.

分析 (1)化简$f(x)+f(2-x)=\frac{x}{x-1}+\frac{2-x}{1-x}$=2,然后求解f(-16)+f(-15)+f(-14)+…+f(17)+f(18的值即可.
(2)判断$f(x)=1+\frac{1}{x-a}$,在[a-2,a-1]上单调递减,通过f(a-1)≤f(x)≤f(a-2)求解函数的值域即可.(3)化简g(x)=x2-|x+1-a|(x≠a),通过
①当x≥a-1且x≠a,$a≥\frac{3}{2}$时,则函数在[a-1,a)和(a,+∞)上单调递增求出最小值.a$<\frac{3}{2}$且a$≠\frac{1}{2}$,求解最小值.当$a=\frac{1}{2}$时,g(x)最小值不存在.②当x≤a-1时,通过a的范围,分别求解函数的最小值.推出结果即可.

解答 解:(1)$f(x)+f(2-x)=\frac{x}{x-1}+\frac{2-x}{1-x}$=2,…(2分)
f(-16)+f(-15)+f(-14)+…+f(17)+f(18)=35,…(3分)
(2)证明:$f(x)=1+\frac{1}{x-a}$,易知f(x)在[a-2,a-1]上单调递减,…(4分)
f(a-1)≤f(x)≤f(a-2),…(5分)
即$0≤f(x)≤\frac{1}{2}$,∴$f(x)值域[0,\frac{1}{2}]$.…(6分)
(3)解:g(x)=x2-|x+1-a|(x≠a),
①当$x≥a-1且x≠a,g(x)={x^2}-x-1+a={(x-\frac{1}{2})^2}-\frac{5}{4}+a$,
如果$a-1≥\frac{1}{2}$即$a≥\frac{3}{2}$时,则函数在[a-1,a)和(a,+∞)上单调递增$g{(x)_{min}}=g(a-1)={(a-1)^2}$…(7分)
如果$a-1<\frac{1}{2}即a<\frac{3}{2}且a≠\frac{1}{2},g{(x)_{min}}=g(\frac{1}{2})=a-\frac{5}{4}$,
当$a=\frac{1}{2}$时,g(x)最小值不存在.…(8分)
②当$x≤a-1,g(x)={x^2}+x+1-a={(x+\frac{1}{2})^2}+\frac{3}{4}-a$,
如果$a-1>-\frac{1}{2}即a>\frac{1}{2},g{(x)_{min}}=g(-\frac{1}{2})=\frac{3}{4}-a$,…(9分)
如果$a-1≤-\frac{1}{2}即a≤\frac{1}{2},g(x)在(-∞,\left.{a-1}]$上为减函数,$g{(x)_{min}}=g(a-1)={(a-1)^2}$,…(10分)
当$a≥\frac{3}{2},{(a-1)^2}-(\frac{3}{4}-a)={(a-\frac{1}{2})^2}>0,a<\frac{1}{2},{(a-1)^2}-(a-\frac{5}{4})={(a-\frac{3}{2})^2}≥0$,$\frac{1}{2}<a<\frac{3}{2},a-\frac{5}{4}-(\frac{3}{4}-a)=2(a-1)$,…(11分)
综合得:当a<1且$a≠\frac{1}{2}$时,g(x)最小值是$a-\frac{5}{4}$,
当a≥1时,g(x)最小值为$\frac{3}{4}-a$,
当$a=\frac{1}{2}$时,g(x)最小值不存在.…(12分)

点评 本题考查函数的最值的求法,函数的单调性以及分类讨论思想的应用,二次函数的性质,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=ln(|x|-1)+x的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若向量$λ\overrightarrow{e_1}-\overrightarrow{e_2}$与$\overrightarrow{e_1}-λ\overrightarrow{e_2}$共线,其中$\overrightarrow{e_1},\overrightarrow{e_2}$为不共线的单位单位向量,则实数λ的值等于±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.奇函数f(x)在(-∞,0)上的解析式是f(x)=x(1+x),则f(x)在(0,+∞)上有(  )
A.最大值$-\frac{1}{4}$B.最大值$\frac{1}{4}$C.最小值$-\frac{1}{4}$D.最小值$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\left\{\begin{array}{l}{2^{-x}},x<1\\{log_3}x,x>1\end{array}\right.$.
(1)解方程:f(x)=2;
(2)解不等式:f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设x,y,z都是正数,则三个数$x+\frac{1}{y},y+\frac{1}{z},z+\frac{1}{x}$(  )
A.都大于2B.至少有一个不小于2
C.至少有一个大于2D.至少有一个不大于2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.从1,2,3中随机选取一个数记为a,从2,3,4中随机选取一个数记为b,则a+b>5的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义:对于任意n∈N*,满足条件$\frac{{{a_n}+{a_{n+2}}}}{2}≤{a_{n+1}}$且an≤M(M是与n无关的常数)的无穷数列{an}称为M数列.
(1)若等差数列{bn}的前n项和为Sn,且b2=-3,S5=-25,判断数列{bn}是否是M数列,并说明理由;
(2)若各项为正数的等比数列{cn}的前n项和为Tn,且${c_3}=\frac{1}{4},{T_3}=\frac{7}{4}$,证明:数列{Tn}是M数列,并指出M的取值范围;
(3)设数列${d_n}=|{\frac{p}{n}-1}|({n∈{N^*},p>1})$,问数列{dn}是否是M数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平面向量$\overrightarrow a$、$\overrightarrow b$都是单位向量,若$\overrightarrow b⊥(2\overrightarrow a-\overrightarrow b)$,则$\overrightarrow a$与$\overrightarrow b$的夹角等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案