精英家教网 > 高中数学 > 题目详情
16.已知动点P、Q都在曲线$C:\left\{\begin{array}{l}x=2cosβ\\ y=2sinβ\end{array}\right.$(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.

分析 (1)利用参数方程与中点坐标公式即可得出;
(2)利用两点之间的距离公式、三角函数的单调性即可得出.

解答 解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),
因此M(cosα+cos2α,sinα+sin2α).
M的轨迹的参数方程为$\left\{\begin{array}{l}x=cosα+cos2α\\ y=sin2α+sinα\end{array}\right.(α$为参数,0<α<2π).
(2)M点到坐标原点的距离d=$\sqrt{{x^2}+{y^2}}=\sqrt{2+2cosα}$(0<α<2π).
当α=π时,d=0,故M的轨迹过坐标原点.

点评 本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln$\frac{x+b}{x-b}$.(b>0).
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性;
(3)判断f(x)在(b,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|x2-4x<0},N={x|m<x<5},若M∩N={x|3<x<n},则m+n等于(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=4x3-12x2+a在[-2,2]上的最大值为3,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(n)=2+24+27+210+…+23n+1(n∈N),则f(n)等于(  )
A.$\frac{2}{7}$(8n-1)B.$\frac{2}{7}$(8n+1)C.$\frac{2}{7}$(8n+1-1)D.$\frac{2}{7}$(8n+1+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:${∫}_{2}^{3}$($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)2dx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲、乙两人射击,击中靶子的概率分别为0.85,0.8,若两人同时射击,则他们都脱靶的概率为0.03.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知θ∈(π,$\frac{3}{2}$π),且sin$\frac{θ}{2}$=$\frac{4}{5}$,求$\frac{sinθ}{1+cosθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,椭圆C方程为$\left\{\begin{array}{l}x=5cosφ\\ y=3sinφ\end{array}\right.(φ$为参数),求过椭圆的右焦点,且与直线$\left\{\begin{array}{l}x=4-2t\\ y=3-t\end{array}\right.(t$为参数)平行的直线l的普通方程.

查看答案和解析>>

同步练习册答案