精英家教网 > 高中数学 > 题目详情
7.已知集合M={x|x2-4x<0},N={x|m<x<5},若M∩N={x|3<x<n},则m+n等于(  )
A.9B.8C.7D.6

分析 求出集合的等价条件,根据集合的基本运算进行求解即可.

解答 解:M={x|x2-4x<0}={x|0<x<4},
∵N={x|m<x<5},
∴若M∩N={x|3<x<n},
则m=3,n=4,
故m+n=3+4=7,
故选:C

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知f(x)=$\frac{x}{{e}^{x}}$,定义f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N.经计算f1(x)=$\frac{1-x}{{e}^{x}}$,f2(x)=$\frac{x-2}{{e}^{x}}$,f3(x)=$\frac{3-x}{{e}^{x}}$,…,照此规律,则f2015(0)=(  )
A.-2015B.2015C.$\frac{2014}{e}$D.-$\frac{2014}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若函数y=Asin(ωx+φ)的图形在y轴右侧的第一个最高点为M(2,3),与x轴在原点右侧的第一个交点为N(6,0),求这个函数的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设全集U=R,集合M={x|-2≤x≤2},N={x|y=$\sqrt{1-x}$},则M∪N={x|x≤2},M∩N={x|-2≤x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,A是单位圆与x轴正半轴的交点,点P、B在单位圆上,设∠AOP=θ,∠AOB=α,且$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$.
(Ⅰ)记四边形OAQP的面积为S,当0<θ<π时,$\overrightarrow{OA}$.$\overrightarrow{OQ}$+S求的最大值及此时θ的值;
(Ⅱ)若α≠$\frac{kπ}{2}$,θ≠kπ(k∈Z),且$\overrightarrow{OB}$∥$\overrightarrow{OQ}$,求证:tanα=tan$\frac{θ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某汽车厂有一条价值为a万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值.经过市场调查,产品的增加值y万元与技术改造投入的x万元之间满足:①y与(a-x)和x2的乘积成正比;②x∈(0,$\frac{4a}{5}$].若x=$\frac{a}{2}$时,y=a3
(Ⅰ)求产品增加值y关于x的表达式;
(Ⅱ)求产品增加值y的最大值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知动点P、Q都在曲线$C:\left\{\begin{array}{l}x=2cosβ\\ y=2sinβ\end{array}\right.$(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知数列{an}的前n项和Sn=2n2-3n+1,求{an}的通项公式.
(2)在数列{an}中,已知a1=2,an-an-1=n(n≥2),求{an}的通项公式.

查看答案和解析>>

同步练习册答案