| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 由题意直线x=是对称轴,对称中心为(-$\frac{π}{16}$,0),根据三角函数的性质可求ω的最小值.
解答 解:函数f(x)=sin(ωx+φ)(ω>0)的图象关于x=$\frac{π}{16}$对称且f(-$\frac{π}{16}$)=0,
∴ω$\frac{π}{16}$+φ=kπ+$\frac{π}{2}$…①,-ω$\frac{π}{16}$+φ=kπ…②,ωx0$\frac{ωπ}{4}$+φ≤$\frac{π}{2}$+2kπ且(ωx0+φ)≥-$\frac{π}{2}$+2kπ…③
由①②解得ω=4,φ=kπ+$\frac{π}{4}$,(k∈Z)
当k=0时,ω=4,φ=$\frac{π}{4}$,③成立,满足题意.
故得ω的最小值为4.
故选B.
点评 本题考查了三角函数图象及性质的综合运用能力和计算能力.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 输出使1×2×4×…×n≥1 000成立的最大整数n+2 | |
| B. | 输出使1×2×4×…×n≥1 000成立的最小整数n+2 | |
| C. | 输出使1×2×4×…×n≥1 000成立的最小整数n | |
| D. | 输出使1×2×4×…×n≥1 000成立的最大整数n |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com