精英家教网 > 高中数学 > 题目详情
15.已知i是虚数单位,则$\frac{1+i}{1-i}$=(  )
A.1B.-1C.iD.-i

分析 直接利用复数的除法,即可得出结论.

解答 解:由题意,$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{2}$=i,
故选C.

点评 本题考查复数的运算,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=ex-ax-1,g(x)=lnx-ax+a,若存在x0∈(1,2),使得f(x0)g(x0)<0,则实数a的取值范围是(  )
A.$(ln2,\frac{{{e^2}-1}}{2})$B.(ln2,e-1)C.[1,e-1)D.$[1,\frac{{{e^2}-1}}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.甲乙丙三人一起参加机动车驾驶证科目考三试后,与丁相聚,丁询问甲乙丙的考试结果,甲说:“我通过了.”,乙说:“我和甲都通过了.”,丙说:“我和乙都通过了.”甲乙丙三人有且只有一个人说的内容与考试结果不完全相同,甲乙丙中没有通过的是丙.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读程序框图,运行相应的程序,则输出的T值为(  )
A.22B.24C.39D.41

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+3y-6≥0}\\{3x+2y-9≤0}\end{array}\right.$,则目标函数z=2x-y的最大值是(  )
A.-2B.2C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(ωx+φ)(ω>0)的图象关于直线x=$\frac{π}{16}$对称且f(-$\frac{π}{16}$)=0,如果存在实数x0,使得对任意的x都有f(x0)≤f(x)≤f(x0+$\frac{π}{4}$),则ω的最小值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某钢厂打算租用A,B两种型号的火车车皮运输900吨钢材,A,B两种车皮的载货量分别为36吨和60吨,租金分别为1.6万元/个和2.4元/个,钢厂要求租车皮总数不超过21个,且B型车皮不多于A型车皮7个,分别用x,y表示租用A,B两种车皮的个数.
(Ⅰ)用x,y列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)分别租用A,B两种车皮的个数是多少,才能使得租金最少?并求出此最小租金.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个几何体的三视图如图所示:
(1)求这个几何体的体积;
(2)若该几何体的表面积为球O表面积的$\frac{7}{4}$ 倍,求球O内接正方体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,且圆${C_2}:{x^2}+{y^2}=4$经过椭圆C1短轴的两个端点,C,D是圆C2上两个动点,直线CD交椭圆C1于A,B两点.
(1)求椭圆C1的方程;
(2)当$|{CD}|=2\sqrt{3}$时,求|AB|的取值范围.

查看答案和解析>>

同步练习册答案