精英家教网 > 高中数学 > 题目详情
19.已知抛物线C:y2=4x的焦点为F,过点F且倾斜角为$\frac{π}{3}$的直线与抛物线C相交于P,Q两点,则弦PQ的长为(  )
A.3B.4C.5D.$\frac{16}{3}$

分析 直线PQ的方程是$y=\sqrt{3}({x-1})$,把$y=\sqrt{3}({x-1})$代入抛物线y2=4x消y得3x2-10x+3=0,利用弦长公式,即可得出结论.

解答 解:直线PQ的方程是$y=\sqrt{3}({x-1})$,把$y=\sqrt{3}({x-1})$代入抛物线y2=4x消y得3x2-10x+3=0,
设Q(x1,y1),P(x2,y2),则${x_1}+{x_2}=\frac{10}{3}$,
所以|PQ|=x1+x2+p=$\frac{10}{3}+2$=$\frac{16}{3}$,
故选D.

点评 本题考查直线与抛物线位置关系的运用,考查弦长公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知非零向量$\overrightarrow{OA},\overrightarrow{OB}$不共线,且$2\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$,若$\overrightarrow{PA}=λ\overrightarrow{AB}(λ∈R)$,则x,y满足的关系是(  )
A.x+y-2=0B.2x+y-1=0C.x+2y-2=0D.2x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(ωx+φ)(ω>0)的图象关于直线x=$\frac{π}{16}$对称且f(-$\frac{π}{16}$)=0,如果存在实数x0,使得对任意的x都有f(x0)≤f(x)≤f(x0+$\frac{π}{4}$),则ω的最小值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知cos(θ+$\frac{π}{2}$)=$\frac{4}{5}$,-$\frac{π}{2}$<θ<$\frac{π}{2}$,则sin2θ的值等于(  )
A.-$\frac{24}{25}$B.$\frac{24}{25}$C.-$\frac{12}{25}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个几何体的三视图如图所示:
(1)求这个几何体的体积;
(2)若该几何体的表面积为球O表面积的$\frac{7}{4}$ 倍,求球O内接正方体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若数列{an}满足(2n+3)an+1-(2n+5)an=(2n+3)(2n+5)lg(1+$\frac{1}{n}$),且a1=5,则数列{$\frac{{a}_{n}}{2n+3}$}的第2016项为(  )
A.lg2017B.lg2016C.1+lg2016D.1+lg2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设数列{an}前n项和为Sn,如果${a_1}=\frac{6}{7},{a_n}=\frac{{3{S_n}}}{n+3}({n∈{N_+}})$那么a48=350.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有一段演绎推理:“直线平行于平面,则这条直线平行于平面内所有直线;已知直线b?平面α,直线a?平面α,直线b∥平面α,则直线b∥直线a”的结论是错误的,这是因为(  )
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=cos2x-sin x的最大值是$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案