已知函数,
(1)判断函数的奇偶性;
(2)求函数的单调区间;
(3)若关于的方程有实数解,求实数的取值范围
(1)偶函数;(2),;(3)
【解析】
试题分析:(1)判断奇偶性,需先分析函数的定义域要关于原点对称,然后分析解析式与的关系可得;(2)根据偶函数在对称区间上的单调性相反,所以可以考虑先分析时的单调性,于是在时利用导数分析函数的单调性,然后再分析对称区间上的单调性;(3)把方程的根转化为函数的零点,然后利用导数分析函数的最值,保证函数图形与的交点的存在
试题解析:(1)函数的定义域为且关于坐标原点对称 1分
为偶函数 4分
(2)当时, 5分
令
令
6分
所以可知:当时,单调递减,
当时,单调递增, 7分
又因为是偶函数,所以在对称区间上单调性相反,所以可得:
当时,单调递增,
当时,单调递减, 8分
综上可得:的递增区间是:,;
的递减区间是: , 10分
(3)由,即,显然,
可得:令,当时,
12分
显然,当时,,单调递减,
当时,,单调递增,
时, 14分
又,所以可得为奇函数,所以图像关于坐标原点对称
所以可得:当时, 16分
∴的值域为 ∴的取值范围是 16分
考点:奇偶性,导数,函数的单调性,函数的最值
科目:高中数学 来源: 题型:
ln(2-x2) |
|x+2|-2 |
AB |
AD |
查看答案和解析>>
科目:高中数学 来源: 题型:
1-xp |
1+λxp |
1 |
p |
1 |
n |
n |
i=1 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(江西卷解析版) 题型:解答题
若函数h(x)满足
(1)h(0)=1,h(1)=0;
(2)对任意,有h(h(a))=a;
(3)在(0,1)上单调递减。则称h(x)为补函数。已知函数
(1)判函数h(x)是否为补函数,并证明你的结论;
(2)若存在,使得h(m)=m,若m是函数h(x)的中介元,记时h(x)的中介元为xn,且,若对任意的,都有Sn< ,求的取值范围;
(3)当=0,时,函数y= h(x)的图像总在直线y=1-x的上方,求P的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011年上海市普陀区高考数学二模试卷(文理合卷)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com