【题目】设函数
分别在
、
处取得极小值、极大值.
平面上点
、
的坐标分别为
、
,该平面上动点
满足
,点
是点
关于直线
的对称点.
(Ⅰ)求点
、
的坐标;
(Ⅱ)求动点
的轨迹方程.
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)的焦点为F,点A(2,y0)为抛物线上一点,且|AF|=4.
(1)求抛物线的方程;
(2)直线l:y=x+m与抛物线交于不同两点P,Q,若
,其中O为坐标原点,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)如图,长方形材料
中,已知
,
.点
为材料
内部一点,
于
,
于
,且
,
. 现要在长方形材料
中裁剪出四边形材料
,满足
,点
、
分别在边
,
上.
(1)设
,试将四边形材料
的面积表示为
的函数,并指明
的取值范围;
(2)试确定点
在
上的位置,使得四边形材料
的面积
最小,并求出其最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某乡镇政府为了解决农村教师的住房问题,计划征用一块土地盖一幢建筑总面积为10000
公寓楼(每层的建筑面积相同).已知士地的征用费为
,土地的征用面积为第一层的
倍,经工程技术人员核算,第一层建筑费用为
,以后每增高一层,其建筑费用就增加
,设这幢公寓楼高层数为n,总费用为
万元.(总费用为建筑费用和征地费用之和)
(1)若总费用不超过835万元,求这幢公寓楼最高有多少层数?
(2)试设计这幢公寓的楼层数,使总费用最少,并求出最少费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X≥85为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图.
(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(2)从图中考核成绩满足X
[70,79]的学生中任取3人,设Y表示这3人重成绩满足
≤10的人数,求Y的分布列和数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
,则下列四个命题:
![]()
①点
在直线
上运动时,直线
与直线
所成角的大小不变
②点
在直线
上运动时,直线
与平面
所成角的大小不变
③点
在直线
上运动时,二面角
的大小不变
④点
在直线
上运动时,三棱锥
的体积不变
其中的真命题是 ( )
A.①③B.③④C.①②④D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆
经过伸缩变换
后得到曲线
.以坐标原点为极点,
轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的直角坐标方程及直线
的直角坐标方程;
(2)设点
是
上一动点,求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中是真命题的是
![]()
A. 命题“若
,则
”的否命题是“若
,则
”
B. 若
为假命题,则p,q均为假命题
C. 命题p:
,
,则
:
,![]()
D. “
”是“函数
为偶函数”的充要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com