【题目】设二阶矩阵A=.
(1) 求A-1;
(2) 若曲线C在矩阵A对应的变换作用下得到曲线C′:6x2-y2=1,求曲线C的方程.
科目:高中数学 来源: 题型:
【题目】某少儿游泳队需对队员进行限时的仰卧起坐达标测试.已知队员的测试分数与仰卧起坐
个数之间的关系如下:;测试规则:每位队员最多进行三组测试,每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”在一分钟内限时测试的频率分布直方图如下:
(1)计算值;
(2)以此样本的频率作为概率,求
①在本次达标测试中,“喵儿”得分等于的概率;
②“喵儿”在本次达标测试中可能得分的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于M、N两点,直线A1M的斜率为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为,求椭圆方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆M与直线相切,且与圆N:外切
(1)求动圆圆心M的轨迹C的方程;
(2)点O为坐标原点,过曲线C外且不在y轴上的点P作曲线C的两条切线,切点分别记为A,B,当直线与的斜率之积为时,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口某天0时至24时的水深(米)随时间(时)变化曲线近似满足如下函数模型().若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( )
A.16时B.17时C.18时D.19时
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下说法:
①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;
②设有一个回归方程,变量增加1个单位时,平均增加5个单位
③线性回归方程必过
④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;
⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。
其中错误的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n名,获得了他们一周参加主题教育活动的时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在内的人数为92.
(1)估计这些党员干部一周参与主题教育活动的时间的平均值;
(2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在内的党员干部给予奖励,且参与时间在,内的分别获二等奖和一等奖,通过分层抽样方法从这些获奖人中随机抽取5人,再从这5人中任意选取3人,求3人均获二等奖的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com