精英家教网 > 高中数学 > 题目详情
17.函数y=$\frac{1}{2}$-sin2x+$\sqrt{3}$sin xcosx的单调増区间为(  )
A.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)D.[kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$](k∈Z)

分析 利用二倍角公式以及两角和与差的三角函数,通过正弦函数的单调性求解即可.

解答 解:函数y=$\frac{1}{2}$-sin2x+$\sqrt{3}$sin xcosx=-sin2x+$\sqrt{3}$sinxcosx+$\frac{1}{2}$
=-$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$
=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x
=sin(2x+$\frac{π}{6}$),
由2k$π-\frac{π}{2}$≤2x+$\frac{π}{6}$$≤2kπ+\frac{π}{2}$,k∈Z.
解得:k$π-\frac{π}{3}$≤x≤k$π+\frac{π}{6}$,k∈Z.
∴函数y=$\frac{1}{2}$-sin2x+$\sqrt{3}$sin xcosx的单调増区间为:[kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$](k∈Z).
故选:D.

点评 本题考查三角函数的恒等变换的应用,正弦函数的单调性以及两角和与差的三角函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.《九章算术》是中国古代的数学专著,其中记载:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”此文阐述求两个数的最大公约数的重要方法“更相减损术”.艾学习同学在使用“更相减损术”求588与315的最大公约数时,计算过程第二步不小心破损导致过程不完整,“(588,315)→(•,315)→(273,42)→…”艾学习同学计算过程中破损处应填写273.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,右顶点为A,上顶点为B,以坐标原点O为圆心,椭圆C的短轴长为直径作圆O,截直线AB的弦长为$\frac{6\sqrt{7}}{7}$(a2-b2).
(1)求椭圆C的标准方程;
(2)是否存在过椭圆C的右焦点F的直线l,与椭圆C相交于G、H两点,使得△AFG与△AFH的面积比为1:2?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.6个人排成一排,对排位顺序有如下要求,甲不能排在第一位,乙必须排在前两位,丙必须排在最后一位,那这样排位方法有(  )种.
A.54种B.48种C.42种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(Ⅰ)用综合法证明:a+b+c≥$\sqrt{ab}+\sqrt{bc}+\sqrt{ca}$(a,b,c均为正实数);
(Ⅱ)已知:x∈R,a=x2-1,b=4x+5,求证:a,b中至少有一个不小于0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设实数x,y满足$\left\{\begin{array}{l}{x+2y≤6}\\{2x+y≤6}\\{x≥0}\\{y≥0}\end{array}\right.$,则Z=max{2x+3y-1,x+2y+2}的取值范围是[2,9].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足关系式Sn+an=$\frac{n-1}{n(n+1)}$(n∈N*),设bn=an+$\frac{1}{n(n+1)}$.
(1)求证:数列{bn}为等比数列;
(2)求an及Sn
(3)设cn=Sn+nan,Tn为数列{cn}的前n项和,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若矩阵A=$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$,B=$[\begin{array}{l}{4}&{3}\\{2}&{1}\end{array}]$,则AB=$[\begin{array}{l}{8}&{5}\\{20}&{13}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}中,a1=1,an=$\sqrt{{a}_{n}{a}_{n+1}-2}$.
(1)证明:an<an+1
(2)证明:anan+1≥2n+1;
(3)设bn=$\frac{{a}_{n}}{\sqrt{n}}$,证明:2<bn<$\sqrt{5}$(n≥2).

查看答案和解析>>

同步练习册答案