9£®ÒÑÖªµãP£¨2£¬$\sqrt{2}$£©ÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉϵÄÒ»µã£¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¹ýµãA£¨-¦Á£¬0£©ÈÎ×÷Á½ÌõÖ±Ïßl1£¬l2·Ö±ð½»ÍÖÔ²ÓÚE¡¢FÁ½µã£¬½»yÖáÓÚM£¬NÁ½µã£¬EÓëMÁ½¸öµã²»Öغϣ¬ÇÒE£¬F¹ØÓÚÔ­µã¶Ô³Æ£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÒÔMNΪֱ¾¶µÄÔ²ÊÇ·ñ½»xÖáÓÚ¶¨µãQ£¿ÈôÊÇ£¬Çó³öµãQµÄ×ø±ê£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a=$\sqrt{2}$c£¬¼´a2=2b2£¬½«P£¨2£¬$\sqrt{2}$£©´úÈëÍÖÔ²·½³Ì¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßEF·½³Ìy=kx£¨k¡Ù0£©£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃµãE×ø±ê£¬ÇóµÃÖ±ÏßAE·½³Ì·½³Ì£¬µ±x=0£¬ÇóµÃMµã×ø±ê£¬Í¬ÀíÇóµÃNµã×ø±ê£¬ÓÉ$\overrightarrow{MQ}$•$\overrightarrow{NQ}$=0£¬¼´¿ÉÇóµÃtÖµ£¬Çó³öµãQµÄ×ø±ê£»

½â´ð ½â£º£¨1£©ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a=$\sqrt{2}$c£¬¼´a2=2b2£¬
½«P£¨2£¬$\sqrt{2}$£©´úÈë$\frac{{x}^{2}}{2{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬ÇóµÃa2=8£¬b2=4£¬
¡àÍÖÔ²µÄ·½³Ì$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£»
£¨2£©ÍÖÔ²µÄ×󶥵㣨-2$\sqrt{2}$£¬0£©£¬ÓÉE£¬F¹ØÓÚÔ­µã¶Ô³Æ£¬
ÉèÖ±ÏßEF·½³Ìy=kx£¨k¡Ù0£©£¬
$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬ÔòE£¨$\frac{2\sqrt{2}}{\sqrt{1+2{k}^{2}}}$£¬$\frac{2\sqrt{2}k}{\sqrt{1+2{k}^{2}}}$£©£¬
¡àÖ±ÏßAE·½³Ìy=$\frac{k}{1+\sqrt{1+2{k}^{2}}}$£¨x+2$\sqrt{2}$£©£¬
µ±x=0£¬y=$\frac{2\sqrt{2}k}{1+\sqrt{1+2{k}^{2}}}$£¬
¡àµãM£¨0£¬$\frac{2\sqrt{2}k}{1+\sqrt{1+2{k}^{2}}}$£©£¬Í¬Àí¿ÉÖªN£¨0£¬$\frac{2\sqrt{2}k}{1-\sqrt{1+2{k}^{2}}}$£©£¬
¼ÙÉèÔÚxÖáÉÏ´æÔÚ¶¥µãQ£¨t£¬0£©£¬Ôò¡ÏMQNΪֱ½Ç£¬
Ôò$\overrightarrow{MQ}$•$\overrightarrow{NQ}$=0£¬
¼´t2+$\frac{-2\sqrt{2}k}{1+\sqrt{1+2{k}^{2}}}$¡Á$\frac{-2\sqrt{2}k}{1-\sqrt{1+2{k}^{2}}}$=0£¬t2-4=0£¬
½âµÃ£ºt=2»òt=-2£¬
¹Ê´æÔÚµãQ£¨2£¬0£©»òQ£¨-2£¬0£©ÒÔMNΪֱ¾¶µÄÔ²½»xÖáÓڴ˶¥µã£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºþÄϺâÑôÏØËÄÖиßÈý9ÔÂÔ¿¼Êýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬ÒÔÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏߵļ«×ø±ê·½³ÌΪ£®

£¨1£©ÇóÇúÏßµÄÖ±½Ç×ø±ê·½³Ì²¢Ö¸³öÆäÐÎ×´£»

£¨2£©ÉèÊÇÇúÏßÉϵ͝µã£¬ÇóµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬AD=4£¬BD=8£¬Æ½ÃæPAD¡ÍÆ½ÃæABCD£¬AB=2DC=4$\sqrt{5}$£®
£¨¢ñ£©ÉèMÊÇÏß¶ÎPCÉϵÄÒ»µã£¬Ö¤Ã÷£ºÆ½ÃæBDM¡ÍÆ½ÃæPAD
£¨¢ò£©ÇóËÄÀâ×¶P-ABCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬A1B1C1-ABCÊÇÖ±ÈýÀâÖù£¬ËıßÐÎABDCÊÇÌÝÐΣ¬AB¡ÎCD£¬ÇÒ$AB=BD=\frac{1}{2}CD=2$£¬¡ÏBDC=60¡ã£¬EÊÇC1DµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºAE¡ÎÆ½ÃæBB1D£»
£¨¢ò£©µ±A1AΪºÎֵʱ£¬Æ½ÃæB1C1DÓëÆ½ÃæABDCËù³É¶þÃæ½ÇµÄ´óСµÈÓÚ45¡ã£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬Ôڱ߳¤Îª4µÄÁâÐÎABCDÖУ¬¡ÏBAD=60¡ã£¬DE¡ÍABÓÚµãE£¬½«¡÷ADEÑØDEÕÛÆðµ½¡÷A1DEµÄλÖã¬Ê¹A1E¡ÍEB£®
£¨1£©ÇóÖ¤£ºA1D¡ÍDC£»
£¨2£©ÇóÖ±ÏßEDÓëÆ½ÃæA1BCËù³É½ÇµÄÕýÏÒÖµ£»
£¨3£©Çó¶þÃæ½ÇE-A1B-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Éèa£¾0£¬Èô¹ØÓÚx£¬yµÄ²»µÈʽ×é$\left\{\begin{array}{l}{ax-y+2¡Ý0}\\{x+y-2¡Ý0}\\{x-2¡Ü0}\end{array}\right.$£¬±íʾµÄ¿ÉÐÐÓòÓëÔ²£¨x-2£©2+y2=9´æÔÚ¹«¹²µã£¬Ôòz=x+2yµÄ×î´óÖµµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[8£¬10]B£®£¨6£¬+¡Þ£©C£®£¨6£¬8]D£®[8£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬²àÃæPAB¡Íµ×ÃæABCD£¬¡÷PABΪÕýÈý½ÇÐΣ¬AB¡ÍAD£¬CD¡ÍAD£¬µãEΪÏß¶ÎBCµÄÖе㣬F£¬G·Ö±ðΪÏß¶ÎPA£¬AEÉÏÒ»µã£¬ÇÒAB=AD=2£¬PF=2FA£®
£¨1£©È·¶¨µãGµÄλÖã¬Ê¹µÃFG¡ÎÆ½ÃæPCD£»
£¨2£©µãQΪÏß¶ÎABÉÏÒ»µã£¬ÇÒBQ=2QA£¬ÈôÆ½ÃæPCQ½«ËÄÀâ×¶P-ABCD·Ö³ÉÌå»ýÏàµÈµÄÁ½²¿·Ö£¬ÇóÈýÀâ×¶C-DEFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈôµãP£¨a£¬b£©ÊÇÖ±Ïß$y=\sqrt{3}x-\sqrt{3}$Éϵĵ㣬Ôò£¨a+1£©2+b2µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®3B£®$\sqrt{3}$C£®$\frac{{\sqrt{3}}}{2}$D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¹Û²ìÑо¿Ä³ÖÖÖ²ÎïµÄÉú³¤ËÙ¶ÈÓëζȵĹØÏµ£¬¾­¹ýͳ¼Æ£¬µÃµ½Éú³¤ËÙ¶È£¨µ¥Î»£ººÁÃ×/Ô£©ÓëÔÂÆ½¾ùÆøÎµĶԱȱíÈçÏ£º
ζÈt£¨¡æ£©-5068121520
Éú³¤ËÙ¶Èy24567810
£¨1£©ÇóÉú³¤ËÙ¶Èy¹ØÓÚζÈtµÄÏßÐԻع鷽³Ì£»£¨Ð±Âʺͽؾà¾ù±£ÁôΪÈýλÓÐЧÊý×Ö£©£»
£¨2£©ÀûÓã¨1£©ÖеÄÏßÐԻع鷽³Ì£¬·ÖÎöÆøÎ´Ó-50CÖÁ200CʱÉú³¤Ëٶȵı仯Çé¿ö£¬Èç¹ûijÔÂµÄÆ½¾ùÆøÎÂÊÇ20Cʱ£¬Ô¤²âÕâÔ´óÔ¼ÄÜÉú³¤¶àÉÙ£®
¸½£º»Ø¹éÖ±ÏßµÄбÂʺͽؾàµÄ×îС¶þ³Ë·¨¹À¼Æ¹«Ê½·Ö±ðΪ£º$\hat b=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}£¬\hat a=\overline y-\hat b\overline x$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸