·ÖÎö £¨1£©ÓÉe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a=$\sqrt{2}$c£¬¼´a2=2b2£¬½«P£¨2£¬$\sqrt{2}$£©´úÈëÍÖÔ²·½³Ì¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßEF·½³Ìy=kx£¨k¡Ù0£©£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃµãE×ø±ê£¬ÇóµÃÖ±ÏßAE·½³Ì·½³Ì£¬µ±x=0£¬ÇóµÃMµã×ø±ê£¬Í¬ÀíÇóµÃNµã×ø±ê£¬ÓÉ$\overrightarrow{MQ}$•$\overrightarrow{NQ}$=0£¬¼´¿ÉÇóµÃtÖµ£¬Çó³öµãQµÄ×ø±ê£»
½â´ð ½â£º£¨1£©ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a=$\sqrt{2}$c£¬¼´a2=2b2£¬
½«P£¨2£¬$\sqrt{2}$£©´úÈë$\frac{{x}^{2}}{2{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬ÇóµÃa2=8£¬b2=4£¬
¡àÍÖÔ²µÄ·½³Ì$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£»
£¨2£©ÍÖÔ²µÄ×󶥵㣨-2$\sqrt{2}$£¬0£©£¬ÓÉE£¬F¹ØÓÚÔµã¶Ô³Æ£¬
ÉèÖ±ÏßEF·½³Ìy=kx£¨k¡Ù0£©£¬
$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬ÔòE£¨$\frac{2\sqrt{2}}{\sqrt{1+2{k}^{2}}}$£¬$\frac{2\sqrt{2}k}{\sqrt{1+2{k}^{2}}}$£©£¬
¡àÖ±ÏßAE·½³Ìy=$\frac{k}{1+\sqrt{1+2{k}^{2}}}$£¨x+2$\sqrt{2}$£©£¬
µ±x=0£¬y=$\frac{2\sqrt{2}k}{1+\sqrt{1+2{k}^{2}}}$£¬
¡àµãM£¨0£¬$\frac{2\sqrt{2}k}{1+\sqrt{1+2{k}^{2}}}$£©£¬Í¬Àí¿ÉÖªN£¨0£¬$\frac{2\sqrt{2}k}{1-\sqrt{1+2{k}^{2}}}$£©£¬
¼ÙÉèÔÚxÖáÉÏ´æÔÚ¶¥µãQ£¨t£¬0£©£¬Ôò¡ÏMQNΪֱ½Ç£¬
Ôò$\overrightarrow{MQ}$•$\overrightarrow{NQ}$=0£¬
¼´t2+$\frac{-2\sqrt{2}k}{1+\sqrt{1+2{k}^{2}}}$¡Á$\frac{-2\sqrt{2}k}{1-\sqrt{1+2{k}^{2}}}$=0£¬t2-4=0£¬
½âµÃ£ºt=2»òt=-2£¬
¹Ê´æÔÚµãQ£¨2£¬0£©»òQ£¨-2£¬0£©ÒÔMNΪֱ¾¶µÄÔ²½»xÖáÓڴ˶¥µã£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºþÄϺâÑôÏØËÄÖиßÈý9ÔÂÔ¿¼Êýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ
ÔÚÖ±½Ç×ø±êϵ
ÖУ¬ÒÔÔµã
Ϊ¼«µã£¬ÒÔ
ÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏß
µÄ¼«×ø±ê·½³ÌΪ
£®
£¨1£©ÇóÇúÏß
µÄÖ±½Ç×ø±ê·½³Ì²¢Ö¸³öÆäÐÎ×´£»
£¨2£©Éè
ÊÇÇúÏß
Éϵ͝µã£¬Çó
µÄȡֵ·¶Î§£®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [8£¬10] | B£® | £¨6£¬+¡Þ£© | C£® | £¨6£¬8] | D£® | [8£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | $\sqrt{3}$ | C£® | $\frac{{\sqrt{3}}}{2}$ | D£® | 0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ζÈt£¨¡æ£© | -5 | 0 | 6 | 8 | 12 | 15 | 20 |
| Éú³¤ËÙ¶Èy | 2 | 4 | 5 | 6 | 7 | 8 | 10 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com