分析 (1)由题意知an+an+1=2bn2,anan+1=anbnbn+1,从而化简可得bn-1+bn+1=2bn,从而证明;
(2)由题意可得b1=2,b2=3,从而求得bn=n+1,an=bn-1bn=n(n+1);
(3)化简$\frac{1}{{a}_{n}}$+bn=$\frac{1}{n}$-$\frac{1}{n+1}$+n+1,从而利用裂项求和法及拆项求和法求和.
解答 解:(1)证明:∵an,an+1是关于x的方程x2-2bn2x+anbnbn+1=0的两根,
∴an+an+1=2bn2,anan+1=anbnbn+1,
即an+an+1=2bn2,an+1=bnbn+1,
故bn-1bn+bnbn+1=2bn2,
故bn-1+bn+1=2bn,
故{bn}为等差数列;
(2)∵a1=2,a2=6,
∴b1=2,b2=3,
∴bn=n+1,
∴an=bn-1bn=n(n+1);
(3)$\frac{1}{{a}_{n}}$+bn=$\frac{1}{n(n+1)}$+n+1=$\frac{1}{n}$-$\frac{1}{n+1}$+n+1,
故Sn=(1-$\frac{1}{2}$+2)+($\frac{1}{2}$-$\frac{1}{3}$+3)+($\frac{1}{3}$-$\frac{1}{4}$+4)+($\frac{1}{n}$-$\frac{1}{n+1}$+n+1)
=(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)+(2+3+4+…+n+1)
=(1-$\frac{1}{n+1}$)+$\frac{2+n+1}{2}$n
=$\frac{n}{n+1}$+$\frac{n(n+3)}{2}$.
点评 本题考查了等差数列的判断与应用,同时考查了裂项求和法与拆项求和法的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2n | B. | 2n | C. | -4n | D. | 4n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 公差d>0 | B. | 当n=6时Sn最小 | ||
| C. | S13>0 | D. | 满足Sn<0的n有11个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com