精英家教网 > 高中数学 > 题目详情
6.若已知数列{an}满足$\frac{1+2+3+…+n}{{a}_{1}+{a}_{2}+{a}_{3}+…{a}_{n}}$=$\frac{1}{2}$,则an=(  )
A.-2nB.2nC.-4nD.4n

分析 把已知数列递推式变形,可得${S}_{n}={n}^{2}+n$,求出首项,再由an=Sn-Sn-1(n≥2)求得数列的通项公式.

解答 解:由$\frac{1+2+3+…+n}{{a}_{1}+{a}_{2}+{a}_{3}+…{a}_{n}}$=$\frac{1}{2}$,得$\frac{\frac{n(n+1)}{2}}{{S}_{n}}=\frac{1}{2}$,
∴${S}_{n}={n}^{2}+n$,
当n=1时,a1=S1=2;
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}={n}^{2}+n-(n-1)^{2}-(n-1)=2n$,
验证n=1时上式成立,
∴an=2n.
故选:B.

点评 本题考查数列递推式,训练了由数列的前n项和求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足$\left\{\begin{array}{l}{x+y≥2}\\{x+2y≥3}\\{x≥0}\\{y≥0}\end{array}\right.$,则x+3y的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$cos2α=\frac{3}{7}$且cosα<0,tanα<0,则sinα等于(  )
A.$-\frac{{\sqrt{14}}}{7}$B.$\frac{{\sqrt{14}}}{7}$C.$-\frac{{2\sqrt{7}}}{7}$D.$\frac{{2\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A、B、C所对的边分别为a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(Ⅰ)求角C的值;
(Ⅱ)若点M是△ABC中角C的外角内的一点,且CM=2,过点M作MF⊥BC,ME⊥AC,垂足分别为F,E,求MF+ME的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合P={x|x≥3或x≤-3},Q={y|y>-1},则P∩Q=(  )
A.[3,+∞)B.(-∞,-3]∪(-1,+∞)C.(-1,+∞)D.(-∞,-1)∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是定义在R上的奇函数,如图是该函数在一个周期内的图象.其中P为图象与x轴的交点,Q为最低点,R为最高点,$\overrightarrow{PQ}$•$\overrightarrow{QR}$=0,S△PQR=$\frac{{π}^{2}}{2}$,则方程Asin(ωx+φ)=$\frac{π}{2}$|lgx|的根的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知由正数组成的两个数列{an},{bn},如果an,an+1是关于x的方程x2-2bn2x+anbnbn+1=0的两根.
(1)求证:{bn}为等差数列;
(2)己知a1=2,a2=6,分别求数列{an},{bn}的通项公式;
(3)求数列{$\frac{1}{{a}_{n}}$+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在1到6这6个整数中,任取两个不同的数相加,使其和大于6,共有几种取法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,A=60°,b=8,△ABC的面积S=10$\sqrt{3}$,求边长a.

查看答案和解析>>

同步练习册答案