精英家教网 > 高中数学 > 题目详情
16.已知实数x,y满足$\left\{\begin{array}{l}{x+y≥2}\\{x+2y≥3}\\{x≥0}\\{y≥0}\end{array}\right.$,则x+3y的最小值是(  )
A.2B.3C.4D.5

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最小值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+3y得y=-$\frac{1}{3}x+\frac{z}{3}$,
平移直线y=-$\frac{1}{3}x+\frac{z}{3}$,
由图象可知当直线y=-$\frac{1}{3}x+\frac{z}{3}$经过点A(3,0)时,直线y=-$\frac{1}{3}x+\frac{z}{3}$的截距最小,
此时z最小.代入目标函数得z=3+3×0=3.
即z=x+3y的最小值为3.
故选:B.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)的定义域为(-∞,+∞),如果,f(x+2016)=$\left\{\begin{array}{l}\sqrt{2}sinx,x≥0\\ lg(-x),x<0\end{array}\right.$,那么$f(2016+\frac{π}{4})•f(-7984)$=(  )
A.2016B.$\frac{1}{4}$C.4D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-a|-|2x-1|.
(1)当a=2时,求f(x)+3≥0的解集;
(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知条件p:k=$\sqrt{3}$;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p是¬q的(  )
A.充分必要条件B.必要不充分条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在平行四边形ABCD中,AP⊥BD于点P,且$\overrightarrow{AP}$•$\overrightarrow{AC}$=18,则AP=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.关于函数f(x)=sin2x-cos2x有下列命题:
①函数y=f(x)的周期为π;
②直线x=$\frac{π}{4}$是y=f(x)图象的一条对称轴;
③点$({\frac{π}{8},\;0})$是y=f(x)图象的一个对称中心.
其中所有真命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=log7$\frac{x+3}{x-1}$,g(x)=log7(x-1)+log7(5-x),F(x)=f(x)+g(x)
(1)求函数F(x)的定义域;
(2)若F(a)>1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=4cosxsin(x-$\frac{π}{6}}$),x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,BC=4,sinC=2sinB,若f(x)的最大值为f( A),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若已知数列{an}满足$\frac{1+2+3+…+n}{{a}_{1}+{a}_{2}+{a}_{3}+…{a}_{n}}$=$\frac{1}{2}$,则an=(  )
A.-2nB.2nC.-4nD.4n

查看答案和解析>>

同步练习册答案