分析 (1)根据对数函数的性质得到关于x的不等式组,解出即可;(2)问题转化为${log}_{7}^{(\frac{a+3}{a-1})(a-1)(5-a)}$>1,求出a的范围即可.
解答 解:∵f(x)=log7$\frac{x+3}{x-1}$,g(x)=log7(x-1)+log7(5-x),
∴F(x)=f(x)+g(x)=log7$\frac{x+3}{x-1}$+log7(x-1)+log7(5-x),
(1)由题意得:$\left\{\begin{array}{l}{\frac{x+3}{x-1}>0}\\{x-1>0}\\{5-x>0}\end{array}\right.$,解得:1<x<5,
∴函数F(x)的定义域是(1,5);
(2)若F(a)>1,即${log}_{7}^{(\frac{a+3}{a-1})(a-1)(5-a)}$>1,(1<a<5),
∴(a+3)(a-5)<7,解得:1-$\sqrt{23}$<a<1+$\sqrt{23}$,
而1<a<5,
故1<a<5.
点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3) | B. | [3,$\frac{21}{5}$]. | C. | [-3,3] | D. | [5,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $2\sqrt{2}$ | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{14}}}{7}$ | B. | $\frac{{\sqrt{14}}}{7}$ | C. | $-\frac{{2\sqrt{7}}}{7}$ | D. | $\frac{{2\sqrt{7}}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com