精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=log7$\frac{x+3}{x-1}$,g(x)=log7(x-1)+log7(5-x),F(x)=f(x)+g(x)
(1)求函数F(x)的定义域;
(2)若F(a)>1,求a的取值范围.

分析 (1)根据对数函数的性质得到关于x的不等式组,解出即可;(2)问题转化为${log}_{7}^{(\frac{a+3}{a-1})(a-1)(5-a)}$>1,求出a的范围即可.

解答 解:∵f(x)=log7$\frac{x+3}{x-1}$,g(x)=log7(x-1)+log7(5-x),
∴F(x)=f(x)+g(x)=log7$\frac{x+3}{x-1}$+log7(x-1)+log7(5-x),
(1)由题意得:$\left\{\begin{array}{l}{\frac{x+3}{x-1}>0}\\{x-1>0}\\{5-x>0}\end{array}\right.$,解得:1<x<5,
∴函数F(x)的定义域是(1,5);
(2)若F(a)>1,即${log}_{7}^{(\frac{a+3}{a-1})(a-1)(5-a)}$>1,(1<a<5),
∴(a+3)(a-5)<7,解得:1-$\sqrt{23}$<a<1+$\sqrt{23}$,
而1<a<5,
故1<a<5.

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知△ABC的周长为$\sqrt{2}$+1,且sinA+sinB=$\sqrt{2}$sinC,则边AB的长为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x<1}\\{1+lo{g}_{2}x,x≥1}\end{array}\right.$,则使得f(x)≤2成立的x的范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足$\left\{\begin{array}{l}{x+y≥2}\\{x+2y≥3}\\{x≥0}\\{y≥0}\end{array}\right.$,则x+3y的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=l(a>b>0),F1、F2为左右焦点,下顶点为B1,过F的直线l交椭圆于M、N两点,当直线l的倾斜角为$\frac{π}{6}$时,F1B⊥l.
(I)求椭圆C的离心率;
(Ⅱ)若P为椭圆上一动点,直线PM、PN的斜率记为kPM、kPN,且不为零,当直线l垂直于x轴时,$|\frac{1}{{{k_{PM}}}}-\frac{1}{{{k_{PN}}}}|$是否存在最小值?若存在,试求出该最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-3≤0}\\{y≥1}\end{array}\right.$若目标函数z=2x+y的最小值为a,最大值为b,则函数y=x-$\frac{4}{x}$在[a,b]上的值域为(  )
A.(-∞,3)B.[3,$\frac{21}{5}$].C.[-3,3]D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a>0,b>0,$a+b=\frac{1}{a}+\frac{1}{b}$,则$\frac{1}{a}+\frac{2}{b}$的最小值为(  )
A.4B.$2\sqrt{2}$C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$cos2α=\frac{3}{7}$且cosα<0,tanα<0,则sinα等于(  )
A.$-\frac{{\sqrt{14}}}{7}$B.$\frac{{\sqrt{14}}}{7}$C.$-\frac{{2\sqrt{7}}}{7}$D.$\frac{{2\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知由正数组成的两个数列{an},{bn},如果an,an+1是关于x的方程x2-2bn2x+anbnbn+1=0的两根.
(1)求证:{bn}为等差数列;
(2)己知a1=2,a2=6,分别求数列{an},{bn}的通项公式;
(3)求数列{$\frac{1}{{a}_{n}}$+bn}的前n项和Sn

查看答案和解析>>

同步练习册答案