分析 由分段函数,可得当x<1时,21-x≤2,当x≥1时,1+log2x≤2,运用指数函数和对数函数的单调性,解不等式即可得到所求范围.
解答 解:函数f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x<1}\\{1+lo{g}_{2}x,x≥1}\end{array}\right.$,
可得当x<1时,f(x)≤2,即为21-x≤2,
即1-x≤1,解得0≤x<1;
当x≥1时,1+log2x≤2,解得1≤x≤2.
综上可得,x的范围是[0,2].
故答案为:[0,2].
点评 本题考查分段函数的运用:解不等式,注意运用指数函数和对数函数的单调性,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 总计 |
| 频数 | b | |||||
| 频率 | a | 0.25 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {-2,-1} | C. | {-2,-1,0} | D. | {1,2,0} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分必要条件 | B. | 必要不充分条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com