精英家教网 > 高中数学 > 题目详情
18.某校共有学生3000名,各年级男、女生人数如表所示,已知高一、高二年级共有男生1120人,现用分层抽样的方法在全校抽取60名学生,则应在高三年级抽取的学生人数为(  )
高一年级高二年级高三年级
女生456424y
男生644xz
A.16B.18C.20D.24

分析 先求出高三学生数是多少,再求用分层抽样法在高三年级抽取的学生数.

解答 解:根据题意得,
高一、高二学生总数是1120+(456+424)=2000,
∴高三学生总数是3000-2000=1000;
用分层抽样法在高三年级抽取的学生数为$\frac{1000}{3000}×60$=20.
故选:C.

点评 本题考查了分层抽样方法的应用问题,解题时应了解分层抽样方法的特点,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知F1、F2分别是双曲线$\frac{x^2}{8}-{y^2}$=1的左、右焦点,P为双曲线右支上的一点,I是△PF1F2的内心,且${S_{△IP{F_2}}}={S_{△IP{F_1}}}-m{S_{△I{F_1}{F_2}}}$,则m=(  )
A.$\frac{{2\sqrt{14}}}{7}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{{3\sqrt{2}}}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,以C的右焦点F为圆心,以a为半径的圆与C的一条渐近线交于A,B两点,若△ABF为等边三角形,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.命题“$?x>0,x+\frac{1}{x}≥2$”的否定是$?x>0,x+\frac{1}{x}<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一个盒中装有编号分别为1,2,3,4的四个形状大小完全相同的小球.
(1)从盒中任取两球,求取出的球的编号之和大于5的概率.
(2)从盒中任取一球,记下该球的编号a,将球放回,再从盒中任取一球,记下该球的编号b,求|a-b|≥2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线y2=ax(a>0)与直线x=1围成的封闭图形的面积为$\frac{4}{3}$,则二项式(x+$\frac{a}{x}$)20展开式中含x-16项的系数是190.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$的左、右焦点分别是F1,F2,过F2作倾斜角为23°的直线l交椭圆于A,B两点,则的△AF1B的周长是(  )
A.20B.16C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系中,A(1,-1),B(1,3),点C在直线x-y+1=0上.
(1)若直线AC的斜率是直线BC的斜率的2倍,求直线AC的方程;
(2)点B关于y轴对称点为D,若以DC为直径的圆M过点A,求C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一点P到椭圆一个焦点的距离为4,则P到另一焦点距离为(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案