精英家教网 > 高中数学 > 题目详情
8.若椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一点P到椭圆一个焦点的距离为4,则P到另一焦点距离为(  )
A.2B.4C.6D.8

分析 根据题意,设椭圆的焦点为F1、F2,|PF1|=4,结合椭圆的方程找出a的值,根据椭圆的定义可得|PF1|+|PF2|=2a=10,计算可得|PF2|的值,即可得答案.

解答 解:根据题意,设椭圆的焦点为F1、F2,|PF1|=4,
又由椭圆的方程为:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,则a=5;
则有|PF1|+|PF2|=2a=10,又由|PF1|=4,
则|PF2|=2a-|PF1|=6,
即P到另一焦点距离为6;
故选:C.

点评 本题考查椭圆的定义,关键是掌握椭圆的定义并利用标准方程求出常数2a,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某校共有学生3000名,各年级男、女生人数如表所示,已知高一、高二年级共有男生1120人,现用分层抽样的方法在全校抽取60名学生,则应在高三年级抽取的学生人数为(  )
高一年级高二年级高三年级
女生456424y
男生644xz
A.16B.18C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy 中,椭圆G的中心为坐标原点,左焦点为F1(-1,0),离心率e=$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆G 的标准方程;
(2)已知直线l1:y=kx+m1与椭圆G交于 A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.
①证明:m1+m2=0;
②求四边形ABCD 的面积S 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若菱形ABCD的边长为2,则|$\overrightarrow{AB}$-$\overrightarrow{AD}$+$\overrightarrow{CD}$|=(  )
A.2$\sqrt{3}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sin(30°+α)=$\frac{3}{5}$,60°<α<150°,则cosα的值是(  )
A.$\frac{3\sqrt{3}-4}{10}$B.$\frac{4}{5}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“?x0>0,x02-4x0+1<0”的否定是?x>0,x2-4x+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若经过A(a,-1),B(2,3)的直线的斜率为2,则a等于(  )
A.0B.-1C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如表提供了某厂节能降耗技术改造后,在生产A产品过程中记录的产量x(吨)与相应生产能耗y(吨)的几组对应数据:
x3456
y2.5344.5
(1)根据上表提供的数据,求出y关于x的线性回归方程;
(2)试估计产量为10吨时,相应的生产能耗.
参考公式:$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0)的焦点为F,P(1,m)是抛物线C上的一点,且|PF|=2.
(1)若椭圆$C':\frac{x^2}{4}+\frac{y^2}{n}=1$与抛物线C有共同的焦点,求椭圆C'的方程;
(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.

查看答案和解析>>

同步练习册答案