精英家教网 > 高中数学 > 题目详情
13.一个盒中装有编号分别为1,2,3,4的四个形状大小完全相同的小球.
(1)从盒中任取两球,求取出的球的编号之和大于5的概率.
(2)从盒中任取一球,记下该球的编号a,将球放回,再从盒中任取一球,记下该球的编号b,求|a-b|≥2的概率.

分析 (1)利用列举法求出从盒中任取两球的基本事件个数和编号之和大于5的事件个数,由此能求出编号之和大于5的概率.
(2)利用列举法求出有放回的连续取球的基本事件个数和|a-b|≥2的包含的基本事件个数,由此能求出|a-b|≥2的概率.

解答 解:(1)从盒中任取两球的基本事件有:
(1,2),(1,3),(1,4)(2,3),(2,4),(3,4)六种情况.
编号之和大于5的事件有(2,4),(3,4)两种情况,
故编号之和大于5的概率为p=$\frac{2}{6}=\frac{1}{3}$.
(2)有放回的连续取球有:
(1,1),(1,2),(1,3),(1,4),(2,1),
(2,2),(2,3),(2,4),(3,1),(3,2)
(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个基本事件.
而|a-b|≥2的包含(1,3),(1,4),(2,4),(3,1),(4,1),(4,2),共6个基本事件
所以|a-b|≥2的概率为p=$\frac{6}{16}=\frac{3}{8}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知命题p:(x-3)(x+1)>0,命题q:x2-2x+1>0,则命题p是命题q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题p:?x<0,2x>x,命题q:?x∈R,x2+x+1<0,则下列命题正确的是(  )
A.(¬p)∨q为真B.p∨q为真C.p∧(¬q)为假D.(¬p)∧(¬q)为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若实数a,b满足$\frac{1}{a}+\frac{1}{b}=\sqrt{ab}$,则ab的最小值为(  )
A.$\sqrt{2}$B.2C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对边分别是a,b,c,已知acosB+bcosA=2cosC.
(1)求角C的值;
(2)若a+b=4,c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某校共有学生3000名,各年级男、女生人数如表所示,已知高一、高二年级共有男生1120人,现用分层抽样的方法在全校抽取60名学生,则应在高三年级抽取的学生人数为(  )
高一年级高二年级高三年级
女生456424y
男生644xz
A.16B.18C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于数列{an},定义Hn=$\frac{{a}_{1}+2{a}_{2}+…+{2}^{n-1}{a}_{n}}{n}$为{an}的“优值”,现在已知某数列{an}的“优值”Hn=2n+1,记数列{an-kn}的前n项和为Sn,若Sn≤S6对任意的n恒成立,则实数k的取值范围是$[\frac{16}{7},\frac{7}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“-1≤m≤1”是“圆(x+m)2+y2=1与圆(x-2)2+y2=4有公共点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sin(30°+α)=$\frac{3}{5}$,60°<α<150°,则cosα的值是(  )
A.$\frac{3\sqrt{3}-4}{10}$B.$\frac{4}{5}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

同步练习册答案