精英家教网 > 高中数学 > 题目详情
3.已知矩阵A=$[\begin{array}{l}{1}&{-1}\\{a}&{1}\end{array}]$,若点P(1,1)在矩阵A对应的变换作用下得到点P′(0,-8).
(1)求实数a的值;
(2)求矩阵A的特征值.

分析 (1)根据矩阵的乘法,可得方程,即可求实数a的值;
(2)利用矩阵A的特征多项式为f(λ)=(λ-1)2-9=λ2-2λ-8,求矩阵A的特征值.

解答 解:(1)由$[\begin{array}{l}{1}&{-1}\\{a}&{1}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{0}\\{-8}\end{array}]$,得a+1=-8,所以a=-9.
(2)由(1)知A=$[\begin{array}{l}{1}&{-1}\\{-9}&{1}\end{array}]$,则矩阵A的特征多项式为f(λ)=(λ-1)2-9=λ2-2λ-8,
令f(λ)=0,所以矩阵A的特征值为-2或4.

点评 本题考查矩阵的乘法,考查矩阵的特征值,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-x2+mx-3(m∈R),g(x)=xlnx
(Ⅰ)若f(x)在x=1处的切线与直线3x-y+3=0平行,求m的值;
(Ⅱ)求函数g(x)在[a,a+2](a>0)上的最小值;
(Ⅲ)?x∈(0,+∞)都有f(x)≤2g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),两个焦点分别为F1、F2,斜率为k的直线l过右焦点F2且与椭圆交于A、B两点,设l与y轴交点为P,线段PF2的中点恰为B.
(1)若|k|≤$\frac{{2\sqrt{5}}}{5}$,求椭圆C的离心率的取值范围.
(2)若k=$\frac{{2\sqrt{5}}}{5}$,A、B到右准线距离之和为$\frac{9}{5}$,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:定义在R上的奇函数f(x)满足f(0)=0,命题q:函数f(x)=$\frac{{{x^3}-x}}{x-1}$为偶函数,则下列命题中为真命题的是(  )
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合P={x|1≤log2x<2},Q={1,2,3},则P∩Q=(  )
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设p:函数f(x)=2|x-a|在区间(4,+∞)上单调递增;q:loga2<1,如果“¬p”是真命题,“p或q”也是真命题,则实数a的取值范围为a>4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a和b异面,b和c异面,则(  )
A.a∥cB.a和c异面
C.a和c相交D.a与c或平行或相交或异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给定下列两个命题:
p1:?a,b∈R,a2-ab+b2<0;
p2:在三角形ABC中,A>B,则sinA>sinB.
则下列命题中的真命题为(  )
A.p1B.p1∧p2C.p1∨(¬p2D.(¬p1)∧p2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\sqrt{x+1}$+$\sqrt{1-x}$+x的定义域是[-1,1].

查看答案和解析>>

同步练习册答案