14£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©£¬Á½¸ö½¹µã·Ö±ðΪF1¡¢F2£¬Ð±ÂÊΪkµÄÖ±Ïßl¹ýÓÒ½¹µãF2ÇÒÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬ÉèlÓëyÖá½»µãΪP£¬Ïß¶ÎPF2µÄÖеãǡΪB£®
£¨1£©Èô|k|¡Ü$\frac{{2\sqrt{5}}}{5}$£¬ÇóÍÖÔ²CµÄÀëÐÄÂʵÄȡֵ·¶Î§£®
£¨2£©Èôk=$\frac{{2\sqrt{5}}}{5}$£¬A¡¢Bµ½ÓÒ×¼Ïß¾àÀëÖ®ºÍΪ$\frac{9}{5}$£¬ÇóÍÖÔ²CµÄ·½³Ì£®

·ÖÎö £¨1£©ÉèÓÒ½¹µãF2£¨c£¬0£©£¬l£ºy=k£¨x-c£©ÔòP£¨0£¬-ck£©£¬ÓÉÖеã×ø±ê¹«Ê½¿ÉµÃ£º$B£¨\frac{c}{2}£¬-\frac{ck}{2}£©$£¬ÓÉÓÚBÔÚÍÖÔ²ÉÏ£¬¿ÉµÃ${k^2}=\frac{{4{b^2}}}{c^2}\frac{{4{a^2}-{c^2}}}{{4{a^2}}}=£¨\frac{1}{e^2}-1£©£¨4-{e^2}£©=\frac{4}{e^2}+{e^2}-5$£¬ÓÉÓÚ$|k|¡Ü\frac{{2\sqrt{5}}}{5}$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©$k=\frac{{2\sqrt{5}}}{5}$£¬¿ÉµÃ$e=\frac{{2\sqrt{5}}}{5}$£¬Ôò$\frac{c^2}{a^2}=\frac{4}{5}$£¬ÍÖÔ²·½³ÌΪ${x^2}+5{y^2}=\frac{5}{4}{c^2}$£®Ö±Ïßl·½³ÌΪ$y=\frac{{2\sqrt{5}}}{5}£¨x-c£©£¬B£¨\frac{c}{2}£¬-\frac{{\sqrt{5}}}{5}c£©$£¬ÓÒ×¼ÏßΪ$x=\frac{5}{4}c$£®ÉèA£¨x0£¬y0£©¿ÉµÃ$£¨\frac{5}{4}c-{x_0}£©+£¨\frac{5}{4}c-\frac{c}{2}£©=\frac{9}{5}$£¬½â³ö´úÈëÍÖÔ²±ê×¼·½³Ì¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÉèÓÒ½¹µãF2£¨c£¬0£©£¬l£ºy=k£¨x-c£©ÔòP£¨0£¬-ck£©£¬
¡ßBΪF2PµÄÖе㣬¡à$B£¨\frac{c}{2}£¬-\frac{ck}{2}£©$£¬
¡ßBÔÚÍÖÔ²ÉÏ£¬¡à$\frac{c^2}{{4{a^2}}}+\frac{{{c^2}{k^2}}}{{4{b^2}}}=1$£¬
¡à${k^2}=\frac{{4{b^2}}}{c^2}\frac{{4{a^2}-{c^2}}}{{4{a^2}}}=£¨\frac{1}{e^2}-1£©£¨4-{e^2}£©=\frac{4}{e^2}+{e^2}-5$£¬
¡ß$|k|¡Ü\frac{{2\sqrt{5}}}{5}$£¬¡à$\frac{4}{e^2}+{e^2}-5¡Ü\frac{4}{5}$£¬
¡à£¨5e2-4£©£¨e2-5£©¡Ü0£¬¡à$\frac{4}{5}¡Ü{e^2}£¼1$£¬¡à$e¡Ê[\frac{{2\sqrt{5}}}{5}£¬1£©$£®
£¨2£©$k=\frac{{2\sqrt{5}}}{5}$£¬¡à$e=\frac{{2\sqrt{5}}}{5}$£¬Ôò$\frac{c^2}{a^2}=\frac{4}{5}$£¬¡à${a^2}=\frac{5}{4}{c^2}£¬{b^2}=\frac{1}{4}{c^2}$£¬
ÍÖÔ²·½³ÌΪ$\frac{x^2}{{\frac{5}{4}{c^2}}}+\frac{y^2}{{\frac{1}{4}{c^2}}}=1$£¬¼´${x^2}+5{y^2}=\frac{5}{4}{c^2}$£®
Ö±Ïßl·½³ÌΪ$y=\frac{{2\sqrt{5}}}{5}£¨x-c£©£¬B£¨\frac{c}{2}£¬-\frac{{\sqrt{5}}}{5}c£©$£¬ÓÒ×¼ÏßΪ$x=\frac{5}{4}c$£®
ÉèA£¨x0£¬y0£©Ôò$£¨\frac{5}{4}c-{x_0}£©+£¨\frac{5}{4}c-\frac{c}{2}£©=\frac{9}{5}$£¬
¡à${x_0}=2c-\frac{9}{5}£¬{y_0}=\frac{{2\sqrt{5}}}{5}£¨c-\frac{9}{5}£©$£¬
ÓÖ¡ßAÔÚÍÖÔ²ÉÏ£¬¡à${£¨2c-\frac{9}{5}£©^2}+5{[\frac{{2\sqrt{5}}}{5}£¨c-\frac{9}{5}£©]^2}=\frac{5}{4}{c^2}$£¬¼´£¨c-2£©£¨5c-6£©=0£¬
¡àc=2»ò$c=\frac{6}{5}$£®
ËùÇóÍÖÔ²·½³ÌΪ$\frac{x^2}{5}+{y^2}=1$»ò$\frac{{5{x^2}}}{9}+\frac{25}{9}{y^2}=1$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Öеã×ø±ê¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈôÔ²C1£º£¨x-a£©2+y2=12ÓëÔ²C2£ºx2+y2=4ÏàÇУ¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®¡À3B£®¡À1C£®¡À1»ò¡À3D£®1»ò3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªA={x|-x2+1£¼0}£¬B={x|x2+x¡Ü6}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{x|-3¡Üx£¼-1»ò1£¼x¡Ü2}B£®{x|-3£¼x¡Ü-1»ò1£¼x£¼2}C£®{x|-3¡Üx¡Ü-1»ò1¡Üx£¼2}D£®{x|-3¡Üx¡Ü-1»ò1£¼x¡Ü2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÖ±ËÄÀâÖùABCD-A1B1C1D1ÖУ¬AA1=2£¬µ×ÃæÊDZ߳¤Îª1µÄÕý·½Ì壬E£¬F·Ö±ðÊÇÀâB1B£¬DAµÄÖе㣮
£¨1£©ÇóÖ¤£ºBF¡ÎÆ½ÃæAD1E£»
£¨2£©Çó¶þÃæ½ÇD1-AE-CµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³³§¹¤ÈËÔÚ2012ÄêÀïÓÐ1¸ö¼¾¶ÈÍê³ÉÉú²úÈÎÎñ£¬Ôò¿ÉµÃ½±½ð300Ôª£»Èç¹ûÓÐ2¸ö¼¾¶ÈÍê³ÉÉú²úÈÎÎñ£¬Ôò¿ÉµÃ½±½ð750Ôª£»Èç¹ûÓÐ3¸ö¼¾¶ÈÍê³ÉÉú²úÈÎÎñ£¬Ôò¿ÉµÃ½±½ð1260Ôª£»Èç¹ûÓÐ4¸ö¼¾¶ÈÍê³ÉÉú²úÈÎÎñ£¬Ôò¿ÉµÃ½±½ð1800Ôª£»Èç¹û¹¤ÈËËĸö¼¾¶È¶¼Î´Íê³ÉÈÎÎñ£¬ÔòûÓн±½ð£®¼ÙÉèij¹¤ÈËÿ¼¾¶ÈÍê³ÉÈÎÎñÓë·ñÊǵȿÉÄܵģ¬ÇóËûÔÚ2012ÄêÒ»ÄêÀïËùµÃ½±½ðµÄ·Ö²¼Áм°ÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐÃüÌ⣬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâ¡°?x0¡ÊR£¬Ê¹µÃx02-1£¼0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬¾ùÓÐx2-1£¾0¡±
B£®ÃüÌâ¡°´æÔÚËıßÏàµÈµÄ¿Õ¼äËıßÐβ»ÊÇÕý·½ÐΡ±£¬¸ÃÃüÌâÊǼÙÃüÌâ
C£®ÃüÌâ¡°Èôx2=y2£¬Ôòx=y¡±µÄÄæ·ñÃüÌâÊÇÕæÃüÌâ
D£®ÃüÌâ¡°Èôx=3£¬Ôòx2-2x-3=0¡±µÄ·ñÃüÌâÊÇ¡°Èôx¡Ù3£¬Ôòx2-2x-3¡Ù0¡±

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈýÀâ×¶S-ABCÖУ¬ÈýÌõ²àÀâSA=SB=SC=2$\sqrt{3}$£¬µ×ÃæÈý±ßAB=BC=CA=2$\sqrt{6}$£¬Ôò´ËÈýÀâ×¶S-ABCÍâ½ÓÇòµÄ±íÃæ»ýÊÇ36¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¾ØÕóA=$[\begin{array}{l}{1}&{-1}\\{a}&{1}\end{array}]$£¬ÈôµãP£¨1£¬1£©ÔÚ¾ØÕóA¶ÔÓ¦µÄ±ä»»×÷ÓÃϵõ½µãP¡ä£¨0£¬-8£©£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Çó¾ØÕóAµÄÌØÕ÷Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ä³¼¸ºÎÌåµÄ¸©ÊÓͼÊÇÕý·½ÐΣ¬Ôò¸Ã¼¸ºÎÌå²»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®ÈýÀâÖùB£®ËÄÀâÖùC£®Ô²ÖùD£®Ô²×¶

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸