·ÖÎö £¨1£©ÉèÓÒ½¹µãF2£¨c£¬0£©£¬l£ºy=k£¨x-c£©ÔòP£¨0£¬-ck£©£¬ÓÉÖеã×ø±ê¹«Ê½¿ÉµÃ£º$B£¨\frac{c}{2}£¬-\frac{ck}{2}£©$£¬ÓÉÓÚBÔÚÍÖÔ²ÉÏ£¬¿ÉµÃ${k^2}=\frac{{4{b^2}}}{c^2}\frac{{4{a^2}-{c^2}}}{{4{a^2}}}=£¨\frac{1}{e^2}-1£©£¨4-{e^2}£©=\frac{4}{e^2}+{e^2}-5$£¬ÓÉÓÚ$|k|¡Ü\frac{{2\sqrt{5}}}{5}$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©$k=\frac{{2\sqrt{5}}}{5}$£¬¿ÉµÃ$e=\frac{{2\sqrt{5}}}{5}$£¬Ôò$\frac{c^2}{a^2}=\frac{4}{5}$£¬ÍÖÔ²·½³ÌΪ${x^2}+5{y^2}=\frac{5}{4}{c^2}$£®Ö±Ïßl·½³ÌΪ$y=\frac{{2\sqrt{5}}}{5}£¨x-c£©£¬B£¨\frac{c}{2}£¬-\frac{{\sqrt{5}}}{5}c£©$£¬ÓÒ×¼ÏßΪ$x=\frac{5}{4}c$£®ÉèA£¨x0£¬y0£©¿ÉµÃ$£¨\frac{5}{4}c-{x_0}£©+£¨\frac{5}{4}c-\frac{c}{2}£©=\frac{9}{5}$£¬½â³ö´úÈëÍÖÔ²±ê×¼·½³Ì¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÉèÓÒ½¹µãF2£¨c£¬0£©£¬l£ºy=k£¨x-c£©ÔòP£¨0£¬-ck£©£¬
¡ßBΪF2PµÄÖе㣬¡à$B£¨\frac{c}{2}£¬-\frac{ck}{2}£©$£¬
¡ßBÔÚÍÖÔ²ÉÏ£¬¡à$\frac{c^2}{{4{a^2}}}+\frac{{{c^2}{k^2}}}{{4{b^2}}}=1$£¬
¡à${k^2}=\frac{{4{b^2}}}{c^2}\frac{{4{a^2}-{c^2}}}{{4{a^2}}}=£¨\frac{1}{e^2}-1£©£¨4-{e^2}£©=\frac{4}{e^2}+{e^2}-5$£¬
¡ß$|k|¡Ü\frac{{2\sqrt{5}}}{5}$£¬¡à$\frac{4}{e^2}+{e^2}-5¡Ü\frac{4}{5}$£¬
¡à£¨5e2-4£©£¨e2-5£©¡Ü0£¬¡à$\frac{4}{5}¡Ü{e^2}£¼1$£¬¡à$e¡Ê[\frac{{2\sqrt{5}}}{5}£¬1£©$£®
£¨2£©$k=\frac{{2\sqrt{5}}}{5}$£¬¡à$e=\frac{{2\sqrt{5}}}{5}$£¬Ôò$\frac{c^2}{a^2}=\frac{4}{5}$£¬¡à${a^2}=\frac{5}{4}{c^2}£¬{b^2}=\frac{1}{4}{c^2}$£¬
ÍÖÔ²·½³ÌΪ$\frac{x^2}{{\frac{5}{4}{c^2}}}+\frac{y^2}{{\frac{1}{4}{c^2}}}=1$£¬¼´${x^2}+5{y^2}=\frac{5}{4}{c^2}$£®
Ö±Ïßl·½³ÌΪ$y=\frac{{2\sqrt{5}}}{5}£¨x-c£©£¬B£¨\frac{c}{2}£¬-\frac{{\sqrt{5}}}{5}c£©$£¬ÓÒ×¼ÏßΪ$x=\frac{5}{4}c$£®
ÉèA£¨x0£¬y0£©Ôò$£¨\frac{5}{4}c-{x_0}£©+£¨\frac{5}{4}c-\frac{c}{2}£©=\frac{9}{5}$£¬
¡à${x_0}=2c-\frac{9}{5}£¬{y_0}=\frac{{2\sqrt{5}}}{5}£¨c-\frac{9}{5}£©$£¬
ÓÖ¡ßAÔÚÍÖÔ²ÉÏ£¬¡à${£¨2c-\frac{9}{5}£©^2}+5{[\frac{{2\sqrt{5}}}{5}£¨c-\frac{9}{5}£©]^2}=\frac{5}{4}{c^2}$£¬¼´£¨c-2£©£¨5c-6£©=0£¬
¡àc=2»ò$c=\frac{6}{5}$£®
ËùÇóÍÖÔ²·½³ÌΪ$\frac{x^2}{5}+{y^2}=1$»ò$\frac{{5{x^2}}}{9}+\frac{25}{9}{y^2}=1$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Öеã×ø±ê¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¡À3 | B£® | ¡À1 | C£® | ¡À1»ò¡À3 | D£® | 1»ò3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {x|-3¡Üx£¼-1»ò1£¼x¡Ü2} | B£® | {x|-3£¼x¡Ü-1»ò1£¼x£¼2} | C£® | {x|-3¡Üx¡Ü-1»ò1¡Üx£¼2} | D£® | {x|-3¡Üx¡Ü-1»ò1£¼x¡Ü2} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÃüÌâ¡°?x0¡ÊR£¬Ê¹µÃx02-1£¼0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬¾ùÓÐx2-1£¾0¡± | |
| B£® | ÃüÌâ¡°´æÔÚËıßÏàµÈµÄ¿Õ¼äËıßÐβ»ÊÇÕý·½ÐΡ±£¬¸ÃÃüÌâÊǼÙÃüÌâ | |
| C£® | ÃüÌâ¡°Èôx2=y2£¬Ôòx=y¡±µÄÄæ·ñÃüÌâÊÇÕæÃüÌâ | |
| D£® | ÃüÌâ¡°Èôx=3£¬Ôòx2-2x-3=0¡±µÄ·ñÃüÌâÊÇ¡°Èôx¡Ù3£¬Ôòx2-2x-3¡Ù0¡± |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÈýÀâÖù | B£® | ËÄÀâÖù | C£® | Ô²Öù | D£® | Ô²×¶ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com