精英家教网 > 高中数学 > 题目详情
3.P为椭圆C上一点,F1,F2为两焦点,$|{P{F_1}}|=13,|{P{F_2}}|=15,tan∠P{F_1}{F_2}=\frac{12}{5}$,则椭圆C的离心率e=$\frac{1}{2}$.

分析 由题意画出图形,由已知求出cos∠PF1F2,再由余弦定理求得c得答案.

解答 解:如图,
由tan$∠P{F}_{1}{F}_{2}=\frac{12}{5}$,得∠PF1F2为锐角,
且$\frac{sin∠P{F}_{1}{F}_{2}}{cos∠P{F}_{1}{F}_{2}}=\frac{12}{5}$,联立$si{n}^{2}∠P{F}_{1}F2+co{s}^{2}∠P{F}_{1}{F}_{2}=1$,
解得:cos∠PF1F2=$\frac{5}{13}$,
在△PF1F2中,有$|P{F}_{2}{|}^{2}=|P{F}_{1}{|}^{2}+4{c}^{2}-4c|P{F}_{1}|cos∠P{F}_{1}{F}_{2}$,
得$1{5}^{2}=1{3}^{2}+4{c}^{2}-4×13×\frac{5}{13}c$,解得c=-2(舍)或c=7.
又2a=|PF1|+|PF2|=13+15=28,得a=14,
∴$e=\frac{c}{a}=\frac{7}{14}=\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查椭圆的简单性质,考查余弦定理的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,已知a(bcosB-ccosC)=(b2-c2)cosA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,如果运行结果为720,那么判断框中应填入(  )
A.k<6?B.k<7?C.k>6?D.k>7?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥BD,∠DAB=60°,AE⊥BD,CB=CD=AE=DE=1;
(Ⅰ)求证:BD⊥平面AED;
(2)求直线AB与平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某人驾车遇到险情而紧急制动并以速度v(t)=120-60t(t为事件单位s)形式至停止,则从开始制动到汽车完全停止所形式的距离(单位:m)为(  )
A.100B.150C.120D.160

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(x3-x2+a)+f(-x3+x2-a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围为[$-\frac{23}{27}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据,那么该棱锥外接球的体积是$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右交点为F(c,0),经过原点且以F为圆心的圆被双曲线的一条渐近线所截得的弦长为$\sqrt{3}c$,则此双曲线的离心率为(  )
A.2B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在斜三棱柱ABC-A1B1C1中,BC⊥CC1,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D.
(1)证明:BC⊥平面ACC1A1
(2)若AA1=$\sqrt{2}$,求V${\;}_{C-{A}_{1}{B}_{1}B}$.

查看答案和解析>>

同步练习册答案