精英家教网 > 高中数学 > 题目详情
8.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(x3-x2+a)+f(-x3+x2-a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围为[$-\frac{23}{27}$,1].

分析 根据条件即可得出f(x3-x2+a)≥f(1),而f(x)为偶函数,从而得出f(|x3-x2+a|)≥f(1),根据单调性即可得出|x3-x2+a|≤1,进而得出-x3+x2-1≤a≤-x3+x2+1,而x∈[0,1].可设g(x)=-x3+x2+1,h(x)=-x3+x2-1,然后求导数,根据导数符号判断g(x),h(x)的单调性,进而得出g(x)的最小值,h(x)的最大值,从而得出a的取值范围.

解答 解:f(x)是R上的偶函数;
∴f(-x3+x2-a)=f(x3-x2+a);
∴由f(x3-x2+a)+f(-x3+x2-a)≥2f(1)得,2f(x3-x2+a)≥2f(1);
∴f(x3-x2+a)≥f(1);
∴f(|x3-x2+a|)≥f(1);
又f(x)在[0,+∞)上递减;
∴|x3-x2+a|≤1;
∴-1≤x3-x2+a≤1;
∴-x3+x2-1≤a≤-x3+x2+1对x∈[0,1]恒成立;
设g(x)=-x3+x2+1,h(x)=-x3+x2-1,则$g′(x)=h′(x)=-3x(x-\frac{2}{3})$;
∴$x∈[0,\frac{2}{3}]$时,g(x),h(x)都单调递增,x$∈(\frac{2}{3},1]$时,g(x),h(x)都单调递减;
∴h(x)的最大值为$f(\frac{2}{3})=-\frac{23}{27}$,g(x)的最小值为f(0)=1;
∴$-\frac{23}{27}≤a≤1$;
即实数a的取值范围为$[-\frac{23}{27},1]$.
故答案为:$[-\frac{23}{27},1]$.

点评 考查偶函数的定义,减函数的定义,绝对值不等式的解法,以及函数导数符号和函数单调性的关系,根据函数单调性求函数最值的方法,以及恒成立问题的处理方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若函数y=f(x)的定义域是[0,6],则函数g(x)=$\frac{f(3x)}{\sqrt{x-1}}$的定义域是(  )
A.[0,2]B.(1,2]C.(1,18]D.[0,1]∪(1,18]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设A={x|y=$\sqrt{2-x}$},B={y|y=ln(1+x)},则A∩B=(  )
A.(-1,+∞)B.(-∞,2]C.(-1,2]D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在[-1,1]上任取一数a,在[1,2]上任取一数b,则点(a,b)满足a2+b2≤2的概率为(  )
A.$\frac{π-1}{4}$B.$\frac{π-1}{2}$C.$\frac{π-2}{4}$D.$\frac{π-2}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.P为椭圆C上一点,F1,F2为两焦点,$|{P{F_1}}|=13,|{P{F_2}}|=15,tan∠P{F_1}{F_2}=\frac{12}{5}$,则椭圆C的离心率e=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}$x3+ax2+(2a-1)x.
(1)当a=3时,求函数f(x)的极值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,过点P作圆的切线PC,切点为C,过点P的直线与圆交于点A、B,$PA=2\sqrt{2}$.
(1)若$AB=2\sqrt{2},∠ACB=∠APC$,求AC的长;
(2)若圆的半径为2,PC=4,求圆心到直线PB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.以下是某地搜集到的新房屋的销售价格 y和房屋的面积x的数据:
房屋面积(m211511080135105
销售价格(万元)24.821.618.429.222
(1)画出数据对应的散点图;
(2)用最小二乘法求线性回归方程;
(3)据(2)的结果估计当房屋面积为150㎡时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.把正整数按如图所示的规律排序,则从2003到2005的箭头方向依次为向右、向上. 

查看答案和解析>>

同步练习册答案