精英家教网 > 高中数学 > 题目详情
17.以下是某地搜集到的新房屋的销售价格 y和房屋的面积x的数据:
房屋面积(m211511080135105
销售价格(万元)24.821.618.429.222
(1)画出数据对应的散点图;
(2)用最小二乘法求线性回归方程;
(3)据(2)的结果估计当房屋面积为150㎡时的销售价格.

分析 (1)根据表中所给的五对数据,在平面直角坐标系中描出这五个点,得到这组数据的散点图.
(2)根据表中所给的数据,求出横标和纵标的平均数,把求得的数据代入求线性回归方程的系数的公式,利用最小二乘法得到结果,写出线性回归方程.
(3)根据第二问求得的线性回归方程,代入所给的x的值,预报出销售价格的估计值,这个数字不是一个准确数值.

解答 解:(1)数据对应的散点图如图所示:

(2)$\overline{x}$=109,$\overline{y}$=23.2,$\sum_{i=1}^{5}$${{x}_{i}}^{2}$=60975,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=115×24.8+110×21.6+80×18.4+135×29.2+105×22=12952,
则$\stackrel{∧}{b}$=$\frac{12952-5×109×23.2}{60975-5×10{9}^{2}}$≈0.1962
$\stackrel{∧}{a}$=23.2-0.1962×109≈1.8142,
故所求回归直线方程为$\stackrel{∧}{y}$=0.1962x+1.8142;
(3)据(2),当x=150m2时,销售价格的估计值为:$\stackrel{∧}{y}$=0.1962×150+1.8142=31.2442(万元)

点评 本题考查线性回归方程的求法和应用,解决本题的关键是利用最小二乘法求线性回归方程的系数时,不要弄错数据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=|ex-3|,若函数y=f(x)-k恰有4 个零点,则实数k的取值范围是(  )
A.(0,ln3)B.(0,2)C.(0,e)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(x3-x2+a)+f(-x3+x2-a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围为[$-\frac{23}{27}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.由半椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x≥0)与半椭圆$\frac{{y}^{2}}{{b}^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(x≤0)合成的曲线称作“果圆”,如图所示,其中a2=b2+c2,a>b>c>0.由右椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x≥0)的焦点F0和左椭圆$\frac{{y}^{2}}{{b}^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(x≤0)的焦点F1,F2确定的△F0F1F2叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x≥0)的离心率的取值范围为(  )
A.($\frac{1}{3}$,1)B.($\frac{\sqrt{2}}{3}$,1)C.($\frac{\sqrt{3}}{3}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右交点为F(c,0),经过原点且以F为圆心的圆被双曲线的一条渐近线所截得的弦长为$\sqrt{3}c$,则此双曲线的离心率为(  )
A.2B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过抛物线y2=4x的焦点F,且倾斜角为30°的直线与抛物线交于A,B两点,则以AB为直径的圆的标准方程是(x-7)2+(y-2$\sqrt{3}$)2=64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,某广场中间有一块扇形绿地OAB,其中O为扇形所在圆的圆心,半径为R,∠AOB=60°,广场管理部门欲在绿地上修建观光小路:在弧AB上选一点C,过C修建与OB平行的小路CD,与OA平行的小路CE,设∠COA=θ,
(1)当θ=45°时,求CD;
(2)θ为何值时,才能使得修建的道路CD与CE的总长最大,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若不等式4x3-3x2+$\frac{1}{4}$≥k对任意的x∈[0,2]都成立,则实数k的最大值为(  )
A.$\frac{1}{2}$B.2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知不论b取何实数,直线y=kx+b与双曲线x2-2y2=1总有公共点,试求实数k的取值范围.

查看答案和解析>>

同步练习册答案