精英家教网 > 高中数学 > 题目详情
9.对于数列{an}、{bn},Sn为数列{an}的前n项和,且Sn+1-(n+1)=Sn+an+n,a1=b1=1,bn+1=3bn+2,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)令cn=$\frac{2({a}_{n}+n)}{n({b}_{n}+1)}$,求数列{cn}的前n项和Tn

分析 (1)由Sn+1-Sn=an+2n+1,则an+1-an=2n+1,利用“累加法”即可求得an=n2,由bn+1+1=3(bn+1),可知数列{bn+1}是以2为首项,以3为公比的等比数列,即可求得{bn}的通项公式;
(2)由(1)可知:cn=$\frac{2({a}_{n}+n)}{n({b}_{n}+1)}$=$\frac{2({n}^{2}+1)}{n(2×{3}^{n-1}-1+1)}$=$\frac{n+1}{{3}^{n-1}}$,利用“错位相减法”即可求得数列{cn}的前n项和Tn

解答 解:(1)由Sn+1-(n+1)=Sn+an+n,
∴Sn+1-Sn=an+2n+1,
∴an+1-an=2n+1,
∴a2-a1=2×1+1,
a3-a2=2×2+1,
a4-a3=2×3+1,

an-an-1=2(n-1)+1,n≥2,
以上各式相加可得:an-a1=2×(1+2+3+…+n-1)+(n-1),
∴an=2×$\frac{(1+n-1)(n-1)}{2}$+(n-1)+1=n2,n≥2,
∴an=n2,n≥2,
当n=1时,a1=1显然成立,故an=n2,n∈N*;
∵bn+1=3bn+2,即bn+1+1=3(bn+1),
b1+1=2,
∴数列{bn+1}是以2为首项,以3为公比的等比数列,
bn+1=2×3n-1
∴bn=2×3n-1-1;
(2)由(1)可知:cn=$\frac{2({a}_{n}+n)}{n({b}_{n}+1)}$=$\frac{2({n}^{2}+1)}{n(2×{3}^{n-1}-1+1)}$=$\frac{n+1}{{3}^{n-1}}$,
∴Tn=c1+c2+…+cn=$\frac{2}{{3}^{0}}$+$\frac{3}{{3}^{1}}$+$\frac{4}{{3}^{2}}$+…+$\frac{n+1}{{3}^{n-1}}$,
$\frac{1}{3}$Tn=$\frac{2}{3}$+$\frac{3}{{3}^{2}}$+$\frac{4}{{3}^{3}}$+…+$\frac{n+1}{{3}^{n}}$,
∴$\frac{2}{3}$Tn=2+$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n-1}}$-$\frac{n+1}{{3}^{n}}$,
=2+$\frac{\frac{1}{3}-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$-$\frac{n+1}{{3}^{n}}$,
=$\frac{5}{2}$-$\frac{2n+5}{2×{3}^{n}}$,
∴Tn=$\frac{15}{4}$-$\frac{2n+5}{4×{3}^{n-1}}$,
数列{cn}的前n项和Tn,Tn=$\frac{15}{4}$-$\frac{2n+5}{4×{3}^{n-1}}$.

点评 本题考查数列的递推公式,考查“累加法”,构造等比数列及“错位相减法”的综合应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}-\frac{1}{2}{x^2}-2x({x≤0})\\{(\frac{1}{2})^x}+1({x>0})\end{array}$.
(1)画出函数f(x)的图象,并根据图象写出函数f(x)的单调区间和值域;
(2)根据图象求不等式f(x)≥$\frac{3}{2}$的解集(写答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的重量(单位:克),重量的分组区间为 (490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量;
(2)在上述抽取的40件产品中任取2件,设ξ为重量超过505克的产品数量,求ξ的分布列及数学期望E(ξ);
(3)如果一件产品的重量低于495克或超过510克都要重新包装,且把频率视作概率.现在从该流水线上每间隔30分钟都随机地取出两件产品进行检测,共取三次,若发现有需要重新包装的产品,就要停产对该流水线进行维修和调试,问:就目前的生产情况,该流水线是否需要停产?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,项测验成绩都及格的人数是25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件
②“当x为某一实数时可使x2<0”是不可能事件
③“明天安顺要下雨”是必然事件
④“从100个灯泡中取出5个,5个都是次品”是随机事件.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中sin2A+3sinAcosA-1=0,A是锐角.
(1)求tan2A的值;
(2)若cosB=$\frac{2\sqrt{5}}{5}$,c=$\sqrt{10}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三个数a=60.7,b=0.76,c=log0.56的大小顺序是(  )
A.b<c<aB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=x3-ax在区间$(-\frac{1}{2},0)$上单调递减,则实数a的取值范围为[$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义:$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,p3…pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}-1}{2}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{2014}{b}_{2015}}$=$\frac{2014}{4029}$.

查看答案和解析>>

同步练习册答案