8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²O£ºx2+y2=1£¬PΪֱÏßl£ºx=t£¨1£¼t£¼2£©ÉÏÒ»µã£®
£¨1£©ÒÑÖªt=$\frac{4}{3}$£®
¢ÙÈôµãPÔÚµÚÒ»ÏóÏÞ£¬ÇÒOP=$\frac{5}{3}$£¬Çó¹ýµãPµÄÔ²OµÄÇÐÏß·½³Ì£»
¢ÚÈô´æÔÚ¹ýµãPµÄÖ±Ïß½»Ô²OÓÚµãA£¬B£¬ÇÒBǡΪÏß¶ÎAPµÄÖе㣬ÇóµãP×Ý×ø±êµÄȡֵ·¶Î§£»
£¨2£©ÉèÖ±ÏßlÓëxÖá½»ÓÚµãM£¬Ïß¶ÎOMµÄÖеãΪQ£¬RΪԲOÉÏÒ»µã£¬ÇÒRM=1£¬Ö±ÏßRMÓëÔ²O½»ÓÚÁíÒ»µãN£¬ÇóÏß¶ÎNQ³¤µÄ×îСֵ£®

·ÖÎö £¨1£©¢ÙÉèµãPµÄ×ø±êΪ£¨$\frac{4}{3}$£¬y0£©£¨y0£¾0£©£¬ÀûÓÃOP=$\frac{5}{3}$£¬¼°£¨$\frac{4}{3}$£©2+y02=£¨$\frac{5}{3}$£©2£¬¿É½âµÃy0=1£®Ò×Öª¹ýµãPµÄÔ²OµÄÇÐÏßµÄбÂʱشæÔÚ£¬¿ÉÉèÇÐÏßµÄбÂÊΪk£¬ÇÐÏßΪy-1=k£¨x-$\frac{4}{3}$£©£¬ÀûÓõ㵽ֱÏß¼äµÄ¾àÀ빫ʽ¿ÉµÃ$\frac{|1-\frac{4}{3}k|}{\sqrt{1+{k}^{2}}}$=1£¬½âµÃk=0»òk=$\frac{24}{7}$£¬´Ó¶ø¿ÉµÃ¹ýµãPµÄÔ²OµÄÇÐÏß·½³Ì£®
¢ÚÉèA£¨x£¬y£©£¬ÔòB£¨$\frac{x+\frac{4}{3}}{2}$£¬$\frac{y+{y}_{0}}{2}$£©£¬ÀûÓõãA¡¢B¾ùÔÚÔ²OÉÏ£¬¿ÉµÃ$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\£¨{\frac{x+\frac{4}{3}}{2}£©}^{2}+£¨{\frac{y+{y}_{0}}{2}£©}^{2}=1\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\£¨x+\frac{4}{3}£©^{2}+£¨{y+{y}_{0}£©}^{2}=4\end{array}\right.$£¬¸Ã·½³Ì×éÓн⣬¼´Ô²x2+y2=1ÓëÔ²£¨x+$\frac{4}{3}$£©2+£¨y+y0£©2=4Óй«¹²µã£¬¼Ì¶ø¿ÉµÃµãP×Ý×ø±êµÄȡֵ·¶Î§£»
£¨2£©ÉèR£¨x2£¬y2£©£¬Ôò$\left\{\begin{array}{l}{{x}_{2}}^{2}+{{y}_{2}}^{2}=1\\£¨{x}_{2}-t£©^{2}+{{y}_{2}}^{2}=1\end{array}\right.$£¬½âµÃx2=$\frac{t}{2}$£¬${{y}_{2}}^{2}$=1-$\frac{{t}^{2}}{4}$£¬ÓÚÊǿɵÃÖ±ÏßRMµÄ·½³ÌΪ£º-$\frac{2{y}_{2}}{t}$£¨x-t£©£¬ÓëÔ²µÄ·½³Ìx2+y2=1ÁªÁ¢£¬¿ÉÇóµÃNµãºá×ø±êΪ$\frac{t£¨3-{t}^{2}£©}{2}$£¬¼Ì¶ø¿ÉµÃNQµÄ±í´ïʽ£¬¿ÉÇóµÃÏß¶ÎNQ³¤µÄ×îСֵ£®

½â´ð ½â£º£¨1£©¢ÙÉèµãPµÄ×ø±êΪ£¨$\frac{4}{3}$£¬y0£©£¬ÒòΪOP=$\frac{5}{3}$£¬ËùÒÔ£¨$\frac{4}{3}$£©2+y02=£¨$\frac{5}{3}$£©2£¬½âµÃy0=¡À1£®
ÓÖµãPÔÚµÚÒ»ÏóÏÞ£¬ËùÒÔy0=1£¬¼´µãPµÄ×ø±êΪ£¨$\frac{4}{3}$£¬1£©£¬Ò×Öª¹ýµãPµÄÔ²OµÄÇÐÏßµÄбÂʱشæÔÚ£¬¿ÉÉèÇÐÏßµÄбÂÊΪk£¬
ÔòÇÐÏßΪy-1=k£¨x-$\frac{4}{3}$£©£¬¼´kx-y+1-$\frac{4}{3}$k=0£¬ÓÚÊÇÓÐ$\frac{|1-\frac{4}{3}k|}{\sqrt{1+{k}^{2}}}$=1£¬½âµÃk=0»òk=$\frac{24}{7}$£®
Òò´Ë¹ýµãPµÄÔ²OµÄÇÐÏß·½³ÌΪ£ºy=1»ò24x-7y-25=0£®
¢ÚÉèA£¨x£¬y£©£¬ÔòB£¨$\frac{x+\frac{4}{3}}{2}$£¬$\frac{y+{y}_{0}}{2}$£©£¬ÒòΪµãA¡¢B¾ùÔÚÔ²OÉÏ£¬ËùÒÔÓÐ$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\£¨{\frac{x+\frac{4}{3}}{2}£©}^{2}+£¨{\frac{y+{y}_{0}}{2}£©}^{2}=1\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\£¨x+\frac{4}{3}£©^{2}+£¨{y+{y}_{0}£©}^{2}=4\end{array}\right.$£®
¸Ã·½³Ì×éÓн⣬¼´Ô²x2+y2=1ÓëÔ²£¨x+$\frac{4}{3}$£©2+£¨y+y0£©2=4Óй«¹²µã£®
ÓÚÊÇ1¡Ü$\sqrt{\frac{16}{9}+{{y}_{0}}^{2}}$¡Ü3£¬½âµÃ-$\frac{\sqrt{65}}{3}$¡Üy0¡Ü$\frac{\sqrt{65}}{3}$£¬¼´µãP×Ý×ø±êµÄȡֵ·¶Î§ÊÇ[-$\frac{\sqrt{65}}{3}$£¬$\frac{\sqrt{65}}{3}$]£®

£¨2£©ÉèR£¨x2£¬y2£©£¬Ôò$\left\{\begin{array}{l}{{x}_{2}}^{2}+{{y}_{2}}^{2}=1\\£¨{x}_{2}-t£©^{2}+{{y}_{2}}^{2}=1\end{array}\right.$£¬½âµÃx2=$\frac{t}{2}$£¬${{y}_{2}}^{2}$=1-$\frac{{t}^{2}}{4}$£®
Ö±ÏßRMµÄ·½³ÌΪ£º-$\frac{2{y}_{2}}{t}$£¨x-t£©£®
ÓÉ$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\ y=-\frac{2{y}_{2}}{t}£¨x-t£©\end{array}\right.$¿ÉµÃNµãºá×ø±êΪ$\frac{t£¨3-{t}^{2}£©}{2}$£¬
ËùÒÔNQ=$\sqrt{{£¨\frac{2t-{t}^{3}}{2}£©}^{2}+1-{£¨\frac{3t-{t}^{3}}{2}£©}^{2}}$=$\frac{1}{2}$$\sqrt{2{t}^{4}-5{t}^{2}+4}$£¬ËùÒÔµ±t2=$\frac{5}{4}$£¬¼´t=$\frac{\sqrt{5}}{2}$ʱ£¬NQ×îСΪ$\frac{\sqrt{14}}{8}$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÔ²µÄ·½³ÌµÄ×ÛºÏÓ¦Ó㬿¼²éµãµ½Ö±Ïß¼äµÄ¾àÀ빫ʽ¡¢Ö±Ïߵĵãбʽ·½³Ì£¬Í»³ö¿¼²é·½³Ì˼ÏëÓë×ÛºÏÔËËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ä³µç×ÓÉÌÎñ¹«Ë¾¶Ô10000ÃûÍøÂ繺ÎïÕß2014Äê¶ÈµÄÏû·ÑÇé¿ö½øÐÐͳ¼Æ£¬·¢ÏÖÏû·Ñ½ð¶î£¨µ¥Î»£ºÍòÔª£©¶¼ÔÚÇø¼ä[0.3£¬0.9]ÄÚ£¬ÆäƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£®
£¨1£©Ö±·½Í¼ÖеÄa=3£®
£¨2£©ÔÚÕâЩ¹ºÎïÕßÖУ¬Ïû·Ñ½ð¶îÔÚÇø¼ä[0.5£¬0.9]ÄڵĹºÎïÕßµÄÈËÊýΪ6000£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÃüÌâ¡°?n¡ÊN*£¬f£¨n£©¡ÊN*ÇÒf£¨n£©¡Ün¡±µÄ·ñ¶¨ÐÎʽÊÇ£¨¡¡¡¡£©
A£®?n¡ÊN*£¬f£¨n£©∉N*ÇÒf£¨n£©£¾nB£®?n¡ÊN*£¬f£¨n£©∉N*»òf£¨n£©£¾n
C£®?n0¡ÊN*£¬f£¨n0£©∉N*ÇÒf£¨n0£©£¾n0D£®?n0¡ÊN*£¬f£¨n0£©∉N*»òf£¨n0£©£¾n0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÖÐλÊýΪ1010µÄÒ»×éÊý¹¹³ÉµÈ²îÊýÁУ¬ÆäÄ©ÏîΪ2015£¬Ôò¸ÃÊýÁеÄÊ×ÏîΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{16}+\frac{y^2}{12}=1$£¬µãMÓëCµÄ½¹µã²»Öغϣ¬ÈôM¹ØÓÚCµÄÁ½½¹µãµÄ¶Ô³Æµã·Ö±ðΪP£¬Q£¬Ïß¶ÎMNµÄÖеãÔÚCÉÏ£¬Ôò|PN|+|QN|=16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÈônÊÇÒ»¸öÈýλÕýÕûÊý£¬ÇÒnµÄ¸öλÊý×Ö´óÓÚʮλÊý×Ö£¬Ê®Î»Êý×Ö´óÓÚ°ÙλÊý×Ö£¬Ôò³ÆnΪ¡°ÈýλµÝÔöÊý¡±£¨Èç137£¬359£¬567µÈ£©£®ÔÚij´ÎÊýѧȤζ»î¶¯ÖУ¬Ã¿Î»²Î¼ÓÕßÐè´ÓËùÓеġ°ÈýλµÝÔöÊý¡±ÖÐËæ»ú³éÈ¡1¸öÊý£¬ÇÒÖ»Äܳéȡһ´Î£¬µÃ·Ö¹æÔòÈçÏ£ºÈô³éÈ¡µÄ¡°ÈýλµÝÔöÊý¡±µÄÈý¸öÊý×ÖÖ®»ý²»Äܱ»5Õû³ý£¬²Î¼ÓÕßµÃ0·Ö£¬ÈôÄܱ»5Õû³ý£¬µ«²»Äܱ»10Õû³ý£¬µÃ-1·Ö£¬ÈôÄܱ»10Õû³ý£¬µÃ1·Ö£®
£¨¢ñ£©Ð´³öËùÓиöλÊý×ÖÊÇ5µÄ¡°ÈýλµÝÔöÊý¡±£»
£¨¢ò£©Èô¼×²Î¼Ó»î¶¯£¬Çó¼×µÃ·ÖXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûEX£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=-2£¨x+a£©lnx+x2-2ax-2a2+a£¬ÆäÖÐa£¾0£®
£¨¢ñ£©Éèg£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êý£¬ÌÖÂÛg£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Ö¤Ã÷£º´æÔÚa¡Ê£¨0£¬1£©£¬Ê¹µÃf£¨x£©¡Ý0ÔÚÇø¼ä£¨1£¬+¡Þ£©ÄÚºã³ÉÁ¢£¬ÇÒf£¨x£©=0ÔÚÇø¼ä£¨1£¬+¡Þ£©ÄÚÓÐΨһ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ä³³¬ÊÐËæ»úѡȡ1000λ¹Ë¿Í£¬¼Ç¼ÁËËûÃǹºÂò¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄÖÖÉÌÆ·µÄÇé¿ö£¬ÕûÀí³ÉÈçÏÂͳ¼Æ±í£¬ÆäÖС°¡Ì¡±±íʾ¹ºÂò£¬¡°¡Á¡±±íʾδ¹ºÂò£®
¼×ÒÒ±û¶¡
100¡Ì¡Á¡Ì¡Ì
217¡Á¡Ì¡Á¡Ì
200¡Ì¡Ì¡Ì¡Á
300¡Ì¡Á¡Ì¡Á
85¡Ì¡Á¡Á¡Á
 98¡Á¡Ì¡Á¡Á
£¨1£©¹À¼Æ¹Ë¿Íͬʱ¹ºÂòÒҺͱûµÄ¸ÅÂÊ£»
£¨2£©¹À¼Æ¹Ë¿ÍÔڼס¢ÒÒ¡¢±û¡¢¶¡ÖÐͬʱ¹ºÂò3ÖÖÉÌÆ·µÄ¸ÅÂÊ£»
£¨3£©Èç¹û¹Ë¿Í¹ºÂòÁ˼ף¬Ôò¸Ã¹Ë¿Íͬʱ¹ºÂòÒÒ¡¢±û¡¢¶¡ÖÐÄÄÖÖÉÌÆ·µÄ¿ÉÄÜÐÔ×î´ó£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}+¦Ð$B£®$\frac{2}{3}+¦Ð$C£®$\frac{1}{3}+2¦Ð$D£®$\frac{2}{3}+2¦Ð$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸