精英家教网 > 高中数学 > 题目详情
已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
经过如下五个点中的三个点:P1(-1,-
2
2
)
,P2(0,1),P3(
1
2
2
2
)
P4(1,
2
2
)
,P5(1,1).
(Ⅰ)求椭圆M的方程;
(Ⅱ)设点A为椭圆M的左顶点,B,C为椭圆M上不同于点A的两点,若原点在△ABC的外部,且△ABC为直角三角形,求△ABC面积的最大值.
(Ⅰ)由
(
1
2
)
2
a2
+
(
2
2
)
2
b2
(-1)2
a2
+
(-
2
2
)
2
b2
=
12
a2
+
(
2
2
)
2
b2
12
a2
+
12
b2
,知P3(
1
2
2
2
)
和P5(1,1)不在椭圆M上,即椭圆M经过P1(-1,-
2
2
)
,P2(0,1),P4(1,
2
2
)

于是a2=2,b2=1.
所以椭圆M的方程为:
x2
2
+y2=1
.…(2分)
(Ⅱ)①当∠A=90°时,设直线BC:x=ty+m,
x2+2y2=2
x=ty+m
得(t2+2)y2+2tmy+(m2-2)=0.
设B(x1,y1),C(x2,y2),则△=16-8m2+8t2>0,
y1+y2=-
2tm
t2+2
y1y2=
m2-2
t2+2

所以kABkAC=
y1
x1+
2
y2
x2+
2
=
y1y2
(ty1+m+
2
)(ty2+m+
2
)

=
y1y2
t2y1y2+t(m+
2
)(y1+y2)+(m+
2
)
2
=
m-
2
2(m+
2
)
=-1

于是m=-
2
3
,此时△=16-
16
9
+8t2>0

所以直线BC:x=ty-
2
3

因为y1y2=-
16
9
t2+2
<0
,故线段BC与x轴相交于M(-
2
3
,0)

即原点在线段AM的延长线上,即原点在△ABC的外部,符合题设.…(6分)
所以S△ABC=
1
2
|AM|•|y1-y2|=
2
3
|y1-y2|
=
2
9
[(y1+y2)2-4y1y2]
=
2
9
[(
2
3
2
t
t2+2
)
2
-4(-
16
9
t2+2
)]

=
16
81
×
9t2+16
(t2+2)2
=
16
81
(4-
4t4+7t2
t4+4t2+4
)
8
9

当t=0时取到最大值
8
9
.…(9分)
②当∠A≠90°时,不妨设∠B=90°.
设直线AB:x=ty-
2
(t≠0)
,由
x2+2y2=2
x=ty-
2
(t2+2)y2-2
2
ty=0

所以y=0或y=
2
2
t
t2+2

所以B(
2
t2-2
2
t2+2
2
2
t
t2+2
)
,由AB⊥BC,可得直线BC:y=-tx+
2
t3
t2+2

x2+2y2=2
y=-tx+
2
t3
t2+2
(t2+2)(2t2+1)y2-2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆方程为x2+
y2
4
=1
,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足
OP
=
1
2
(
OA
+
OB
)
,点N的坐标为(
1
2
1
2
)
,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)|
NP
|
的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
4
+
y2
3
=1
,过椭圆的右焦点F的直线l与椭圆交于点A、B,定直线x=4交x轴于点K,直线KA和直线KB的斜率分别是k1、k2
(1)若直线l的倾斜角是45°,求线段AB的长;
(2)求证:k1+k2=0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形ABCD的中心在坐标原点,边AB与x轴平行,AB=8,BC=6.E,F,G,H分别是矩形四条边的中点,R,S,T是线段OF的四等分点,R′,S′,T′是线段CF的四等分点.设直线ER与GR′,ES与GS′,ET与GT′的交点依次为L,M,N.
(1)求以HF为长轴,以EG为短轴的椭圆Q的方程;
(2)根据条件可判定点L,M,N都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段OF的n(n∈N+,n≥2)等分点从左向右依次为Ri(i=1,2,…,n-1),线段CF的n等分点从上向下依次为Ti(i=1,2,…,n-1),那么直线ERi(i=1,2,…,n-1)与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,|AB|=
4
2
3
,|CD|=2-
4
2
3
,AC⊥BD.M为CD的中点.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)过M作AB的垂线,垂足为N,若存在正常数λ0,使
MP
0
PN
,且P点到A、B的距离和为定值,求点P的轨迹E的方程;
(Ⅲ)过(0,
1
2
)的直线与轨迹E交于P、Q两点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),左、右两个焦点分别为F1、F2,上顶点M(0,b),△MF1F2为正三角形且周长为6,直线l:x=my+4与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C的中心在原点,抛物线y2=2
5
x
的焦点是双曲线C的一个焦点,且双曲线经过点(1,
3
)
,又知直线l:y=kx+1与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若
OA
OB
,求实数k值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线C的焦点在y轴上,离心率为
2
,其一个顶点的坐标是(0,1).
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)若直线l与该双曲线交于A、B两点,且A、B的中点为(2,3),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P、Q,且
AP
=
8
5
PQ

(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l:x+
3
y+3=0相切,求椭圆C的方程.

查看答案和解析>>

同步练习册答案